专栏名称: 矽说
半导体行业深度解读
目录
相关文章推荐
OFweek维科网  ·  又一小米生态链品牌关停!雷军也带不动? ·  3 天前  
半导体行业联盟  ·  恭喜!中国光谷,百亿项目达产,高端光电子器件! ·  4 天前  
OFweek维科网  ·  这家面板大厂启动“扩产”! ·  1 周前  
51好读  ›  专栏  ›  矽说

电路大师课系列-模拟集成电路设计第二讲:传输函数,零极点的形成及时域响应

矽说  · 公众号  · 半导体  · 2017-04-20 08:55

正文

编者按:UCLA以电路方向的研究和教学闻名于世界,Behzad Razavi教授和Asad Abidi教授更是世界闻名的电路大师。UCLA的研究生课程模拟集成电路设计(EE215A)正是由Razavi和Abidi两位大师轮流授课。我有幸在UCLA上过两位大师的课,在这里想和大家分享课程的精华部分。两位大师上课的内容略有不同互为补充,所以我们的系列文章中部分笔记内容来自Razavi部分笔记内容来自Abidi。Razavi的EE215A讲义可以在他的主页找到(www.seas.ucla.edu/brweb/teaching.html),不过Razavi上课的风格是发一份讲义然后在关键部分留下空白需要学生自己作笔记以避免学生翘课☺。Abidi的EE215A笔记由卓伟汉整理。讲义的版权归两位教授所有。这是本课程的第二讲。



我们也准备了本次课程解说的pdf版下载,感兴趣的朋友请在关注矽说(微信号:silicon_talks)后发送消息“215A_pdf2”获取下载链接



(Abidi教授,用粉笔敲了几下黑板,双手叉腰说道:”Let’s resume!”)

在模拟集成电路设计第一讲()中,我们介绍了LTI系统。对于一个LTI系统,可以定义系统冲激响应的拉普拉斯变换H(s)传输函数,使得对于变包络正弦激励x(t)=est, LTI系统的响应为y(t)=H(s)est。那么问题来了,我们系统的输入激励可以是任意波形(方波,三角波等等),如何在对任意输入激励使用传输函数呢?这时候我们就需要神奇的拉普拉斯变换。根据拉普拉斯变换的卷积性质:

其中“*”表示卷积运算。同时,对于LTI系统,对于输入激励f(t)的响应y(t)正是f(t)与系统冲激响应h(t)的卷积。因此,系统响应y(t)的拉普拉斯变换Y(s)正是输入激励的拉普拉斯变换F(s)和系统冲激响应的拉普拉斯变换(即系统传输函数)H(s)的乘积:

因此,我们可以很方便地在拉普拉斯域处理LTI系统,并且把得到的Y(s)做拉普拉斯反变换来得到系统的时域响应。更方便的是,当多个LTI系统级联在一起的时候,我们可以通过把多个系统的传输函数相乘来得到总的系统传输函数。

在线性电路分析中,最重要的一类LTI系统是二端口网络,因为大多数基本电路都可以用二端口网络来近似描述。二端口网络由传输函数矩阵来描述。举例来说,我们可以用Z参数(矩阵)来描述一个二端口网络:

其中V1V2分别是端口1和端口2的电压;I1I2分别是流入端口1和端口2的电流。传输函数矩阵由z11(s), z12(s), z21(s), z22(s)组成,每一个zij(s)都是一个传输函数。


除了z参数之外,常用的二端口网络传输函数矩阵还包括y参数(z参数的对偶,输入为电压而输出为电流),混合参数(混合=hybrid=h,即h参数,输入包括电压和电流,输出也包括电压和电流),以及在射频微波电路中得到广泛应用的散射参数(散射=scatter=s,即s参数,输入和输出是在两个端口的入射/反射波幅度)。

(敲黑板:以上是对二端口网络的简单回顾,接下去要讲的二端口网络传输函数以及零极点的性质是这一讲的重点)


对于二端口网络传输函数矩阵中的任何一个传输函数H(s),我们都可以写成如下形式:

其中a0, a1,…an以及b0,b1,…bm的值取决于网络的具体结构。

对于实际二端口网络,分子p(s)和分母q(s)的根是实数或者是共轭复数对。所以我们可以把H(s)写成

其中z0,z1,…zn以及p0,p1,…pm分别是分子和分母的根。我们把zk称为零点,把pk成为极点。

从时间域上,极点和零点会影响二端口网络的瞬时响应(就是大家做仿真时候看的transient)。例如如果有些零极点对会造成电路输出上升下降时间很慢。二端口网络拉普拉斯域输出Vout(s)即输入Vin(s)与传输函数H(s)的乘积:

其中pjH是传输函数的极点,pjIN是输入激励的极点。该乘积可以由因式分解拆成两大部分,一部分是由系统传输函数造成的响应(即自然响应),另一部分是由激励造成的相应(即应激响应)。在因式分解后,等式中每一项的分子都为常数,分母则包含极点信息。在因式分解后,我们只能看到极点,却看不到零点!电路中的极点是由电路中会导致信号相变的器件(如电容和电感)产生,电路中的大部分零点则是由于信号通过多条极点位置不同的通路后相加产生。

电路中的相移器件(电容C1C2)产生极点(1/R1C11/R2C2),而信号经过两条极点位置不同的通路(H1H2)相加产生了额外的零点(2/(R1C1+R2C2)


二端口网络输出的时域响应可以通过对Vout(s)做拉普拉斯反变换得到:

可以看到,一旦有任何一个极点的实部大于零(p=σ+jω,实部为σ)都会造成输出响应随时间指数增长,造成系统不稳定。实际电路中输出幅度不可能无限大,因为在输出幅度增长到一定程度后电路的非线性就开始占主导,于是在实际电路中不稳定现象表现为震荡。所以一个系统若要保证稳定,其传输函数的极点必须实部都小于0(当系统存在实部等于0的极点时该系统为临界稳定)。


以下为Abidi博士生同时也是215A助教哥的补充:

这里补充一个重要的概念:网络的极点PjH 只由网络的拓扑结构决定。只要激励不改变网络的拓扑结构, 任何传输函数的极点都不会改变。激励响应的位置决定了零点的位置。在零状态响应时,激励一定会触发网络的自然响应(即偏微分方程的通解),同时也会建立受迫响应(即偏微分方程的特殊解)。网络每一个自然响应被触发了多少,由自然响应部分的拉普拉斯变换做部分分式展开后得知,而决定部分分式展开系数的是分子上零点的位置。

所以,找极点要看电路纯粹的拓扑结构,找零点要看激励和响应相对的位置。

有些时候,激励和响应的位置会很特殊,零点和极点完全一致从而互相抵消,这时候,就会有一个自然响应不会被触发。


下面来举一个Prof. Abidi 课上讲的例子:

Lattice network (or bridge network)

如果我们需要找传递函数 V2/V1 最直观的方法当然是硬解电路,算出V2V1的关系。然而,Prof. Abidi 通过这个例子教会我们怎么用更深刻的方法寻找和理解极点和零点。


首先我们先假设V2=0找零点。如果V2=0, 那么通过R的电流为0,所以可以直接计算在R两端的电压(通过分压)。

我们发现这个传输函数有4个零点


下面我们找极点,极点是由电路纯粹的拓扑结构决定的。所以我们要把独立源V1去掉,然后找电路的自然响应。很多情况下,自然响应可以通过电路的对称性或者重新把电路画成几种基本型来找到。Prof. Abidi正是用了这种方法。

所以,这个电路有四个极点,(本科电路基础:极点的个数由独立状态变量的数目决定)。但是,其中两个极点会与两个零点抵消,所以最终的V2/V1 的零极点图如下图


零点的位置固定,极点的位置根据R的变化沿着半圆移动。当

时,两个极点重合到

,其中一个极点和一个零点抵消,那么剩下的只有一个极点和一个零点啦。






矽说旨在为大家提供半导体行业深度解读和各种福利
您的支持是我们前进的动力,喜欢我们的文章请长按下面二维码,在弹出的菜单中选择“识别图中二维码”关注我们!

微信号: