专栏名称: 量化前沿速递
金融前沿期刊论文速递
目录
相关文章推荐
前端早读课  ·  【第3445期】React 设计模式:实例钩子模式 ·  昨天  
前端早读课  ·  【第3444期】Chrome 131 ... ·  2 天前  
蚂蚁学Python  ·  普通人想学编程,选择Python就对了 ·  2 天前  
奇舞精选  ·  Vue 官方教学:提升 Vue3 ... ·  2 天前  
前端早读课  ·  【第3443期】2025 ... ·  3 天前  
51好读  ›  专栏  ›  量化前沿速递

量化前沿速递:FOF及资配[20240714]

量化前沿速递  · 公众号  ·  · 2024-07-15 12:00

正文

机器翻译,仅供参考!可使用微信自带翻译功能自行翻译

更多文献获取请关注公众号:量化前沿速递
获取文献链接/翻译/pdf请加入知识星球“量化前沿速递

文献汇总

[1] Performance Analysis of Portfolios that Combine Machine Learning Models  And Multi-Objective Optimization in the Brazilian Stock Market
巴西股市结合机器学习模型和多目标优化的投资组合绩效分析
来源:SSRN_20240712

[1] Performance Analysis of Portfolios that Combine Machine Learning Models  And Multi-Objective Optimization in the Brazilian Stock Market

标题:巴西股市结合机器学习模型和多目标优化的投资组合绩效分析
作者:Natan  Felipe silva,Lélis Andrade,Washington Santos Silva,Maísa  Kely de Melo,Paulo  Henrique Sales Guimarães
来源:SSRN_20240712
Abstract : This work aims to evaluate the performance of portfolios composed of pre-selected assets through machine learning models and subsequently optimized by the multi-objective model. The methodology involves the application of the machine learning algorithms Random Forest (RF), eXtreme Gradient Boosting (XGBoost) and Multilayer Perceptron (MLP) to perform the pre-selection of stocks. This selection is based on pre-defined technical indicators after a......(摘要翻译及全文见知识星球)
Keywords : Machine Learning, Portfolio, Random forest (RF), Multi-objective optimization, Brazil