-
Singh D, Srivastava S K, Chaudhuri T K, et al. Multifacetedrole of matrix metalloproteinases(MMPs)[J]. Front MolBiosci, 2015, 2: 9[2020-01-01]. https://www.frontiersin.org/articles/10.3389/fmolb.2015.00019/full.
-
Grünwald B, Yandooren J, Gerg M, et al. Systemic ablation ofMMP-9 triggers invasive growth and metastasis of pancreaticcancer via deregulation of IL6 expression in the bonemarrow[J]. Mol Cancer Res, 2016, 14(11): 1147-1158.
-
Knapinska A M, Estrada C A, Fields G B. The roles ofmatrix metalloproteinases in pancreatic cancer[J/OL].Prog Mol Biol Transl Sci, 2017,148: 339-354[2020-01-01]. https://www.sciencedirect.com/science/article/pii/S1877117317300364?via%3Dihub. Doi: 10.1016/bs.pmbts.2017.03.004.
-
Radisky E S, Raeeszadeh-Sarmazdeh M, Radisky D C.Therapeutic potential of matrix metalloproteinase inhibition inbreast cancer[J]. J Cell Biochem, 2017, 118(11): 3531-3548.
-
Donnelly S K, Cabrera R, Mao S P H, et al. Rac3 regulatesbeast cancer invasion and metastasis by controlling adhesionand matrix degradation[J]. J Cell Biol, 2017, 216(12): 4331-4349.
-
Luo K W, Chen W, Lung W Y, et al. EGCG inhibited bladdercancer SW780 cell proliferation and migration both in vitro,and in vivo via, down-regulation of NF-κB and MMP-9[J/OL]. J Nutr Biochem, 2017, 41: 56-64[2020-01-01]. https://linkinghub.elsevier.com/retrieve/pii/S0955-2863(16)30225-X.Doi: 10.1016/j.jnutbio.2016.12.004.
-
Huang H S, Jin H L, Zhao H R, et al. RhoGDIβ promotesSp1/MMP-2 expression and bladder cancer invasion throughperturbing miR-200c-targeted JNK2 protein translation[J]. MolOncol, 2017, 11(11): 1579-1594
-
Wu G J, Bao J S, Yue Z J, et al. Elevated expression ofmatrix metalloproteinase-9 is associated with bladder cancerpathogenesis[J]. J Cancer Res Ther, 2018, 14(Supplement): S54-S59.
-
Huang Y C, Huang J M, Feng M, et al. Early changes inthe apparent diffusion coefficient and MMP-9 expressionof a cervical carcinoma U14 allograft model followingirradiation[J]. Oncol Lett, 2017,14(6): 6769-6775.
-
Wu M H, Lin C L, Chiou H L, et al. Praeruptorin a inhibitshuman cervical cancer cell growth and invasion by suppressingMMP-2 expression and ERK1/2 signaling[J/OL]. Int J MolSci, 2017, 19(1): 10[2020-01-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795962/. Doi: 10.3390/ijms19010010.
-
Shay G, Lynch C C, Fingleton B. Moving targets: emergingroles for MMPs in cancer progression and metastasis[J/OL].Matrix Biol, 2015, 44/45/46: 200-206[2020-01-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564058/. Doi:10.1016/j.matbio.2015.01.019.
-
Kim G B, Kim K H, Park Y H, et al. Colorimetric assayof matrix metalloproteinase activity based on metalinduced self-assembly of carboxy gold nanoparticles[J/OL]. Biosens Bioelectron, 2013, 41: 833-839[2020-01-01]. https://www.sciencedirect.com/science/article/pii/S0956566312007002?via%3Dihub. Doi: 10.1016/j.bios.2012.10.025.
-
Chuang Y C, Huang W T, Chiang P H, et al. Aqueouszymography screening of matrix metalloproteinase activityand inhibition based on colorimetric gold nanoparticles[J].Biosens Bioelectron, 2012, 32(1): 24-31.
-
Zhang C Q, Park Y M, Yang D, et al. Development of amatrix metalloproteinase-2 (MMP-2) biosensing system byintegrating an enzyme-mediated color development reactioninto a common electronics components setup[J]. Biochip J,2016, 10(3): 1-10.
-
Lei Z, Zhang H, Wang Y Q, et al. Peptide microarray-basedmetal enhanced fluorescence assay for multiple profilingmatrix metalloproteinases activities[J]. Anal Chem, 2017,89(12): 6749-6757.
-
Ma T C, Hou Y, Zeng J F, et al. Dual-ratiometric targettriggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity andpH in vivo[J]. J Am Chem Soc, 2018, 140(1): 211-218.
-
刘巍 , Huber S A, 李淑清 . 基质金属蛋白酶研究进展 [J].哈尔滨医科大学学报 , 2011, 45(5): 500-503.
-
Jiang T, Olson E S, Nguyen Q T, et al. Tumor imaging bymeans of proteolytic activation of cell-penetrating peptides[J].Proc Natl Acad Sci USA, 2004, 101(51): 17867-17872.
-
Wang X, Xia Y Q, Liu Y Y, et al. Dual-luminophore-labeledgold nanoparticles with completely resolved emission forthe simultaneous imaging of MMP-2 and MMP-7 in livingcells under single wavelength excitation[J]. Chemistry, 2012,18(23): 7189-7195.
-
Gao X N, Jiang L L, Hu B, et al. Au-se bond-based nanoprobefor imaging MMP-2 in tumor cells under high thiolsenvironment[J]. Anal Chem, 2018, 90(7): 4719-4724.
-
Temma T, Hanaoka H, Yonezawa A, et al. Investigationof a MMP-2 activity-dependent anchoring probe fornuclear imaging of cancer[J/OL]. PLoS One, 2014, 9(7):e102180[2020-01-01]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102180.
-
Yue X Y, Wang Z, Zhu L, et al. Novel 19F activatable probefor the detection of matrix metalloprotease-2 activity by MRI/MRS[J]. Mol Pharm, 2014,11(11): 4208-4217.
-
Araki Y, Mimura T. Matrix metalloproteinase gene activationresulting from disordred epigenetic mechanisms in rheumatoidarthritis[J/OL]. Int J Mol Sci, 2017, 18(5): 905[2020-01-01].https://www.mdpi.com/1422-0067/18/5/905. Doi: 10.3390/ijms18050905.
-
Park S, Lee J, Jo M H, et al. In vivo monitoring ofangiogenesis in a mouse hindlimb ischemia model usingfluorescent peptide-based probes[J]. Amino Acids, 2016, 48(7):1641-1654.
-
Hou Y, Zhou J, Gao Z Y, et al. Protease-activated ratiometricfluorescent probe for pH mapping of malignant tumors[J].ACS Nano, 2015, 9(3): 3199-3205.
-
Yang W Q, Zhang G Y, Weng W, et al. Signal on fluorescencebiosensor for MMP-2 based on FRET between semiconducting polymer dots and a metal organic framework[J]. RSC Adv,2014, 4(102): 58852-58857
-
Li S Y, Liu L H, Cheng H, et al. A dual-FRET-basedfluorescence probe for the sequential detection of MMP-2 andcaspase-3[J]. Chem Commun (Camb), 2015, 51(77): 14520-14523.
-
Lee S, Ryu J H, Park K, et al. Polymeric nanoparticlebased activatable near-infrared nanosensor for proteasedetermination in vivo[J]. Nano Lett, 2009, 9(12): 4412-4416
-
Akers W J, Xu B G, Lee H, et al. Detection of MMP-2 andMMP-9 activity in vivo with a triple-helical peptide opticalprobe[J]. Bioconjugate Chem, 2012, 23(3): 656-663.
-
Chan Y C, Chen C W, Chan M H, et al. MMP2-sensing upconversion nanoparticle for fluorescence biosensing in headand neck cancer cells[J/OL]. Biosens Bioelectron, 2016, 80:131-139[2020-01-01]. https://www.sciencedirect.com/science/article/pii/S0956566316300495?via%3Dihub. Doi: 10.1016/j.bios.2016.01.049.
-
Dang Q, Gao H F, Li Z J, et al. Simple and sensitiveelectrogenerated chemiluminescence peptide-based biosensorfor detection of matrix metalloproteinase 2 released fromliving cells[J]. Anal Bioanal Chem, 2016, 408(25): 7067-7075.
-
Biela A, Watkinson M, Meier U C, et al. DisposableMMP-9 sensor based on the degradation of peptide crosslinked hydrogel films using electrochemical impedancespectroscopy[J/OL]. Biosens Bioelectron, 2015, 68: 660-667[2020-01-01]. https://www.sciencedirect.com/science/article/pii/S0956566315000779?via%3Dihub. Doi: 10.1016/j.bios.2015.01.060.
-
Lee J W, Yun J Y, Lee W C, et al. A reference electrodefree electrochemical biosensor for detecting MMP-9 using aconcentric electrode device[J]. Sensor Actuat B Chem, 2017,240(47): 735-741.
-
Shin D S, Liu Y, Gao Y D, et al. Micropatterned surfacesfunctionalized with electroactive peptides for detectingprotease release from cells[J]. Anal Chem, 2013, 85(1): 220-227.
-
Fudala R, Ranjan A P, Mukerjee A, et al. Fluorescencedetection of MMP-9. I. MMP-9 selectively cleaves LysGly-Pro-Arg-Ser-Leu-Ser-Gly-Lys peptide[J]. Curr PharmBiotechno, 2011, 12(5): 834-838.
-
Warren A D, Kwong G A, Wood D K, et al. Point-of-carediagnostics for noncommunicable diseases using syntheticurinary biomarkers and paper microfluidics[J]. Proc Natl AcadSci USA, 2014, 111(10): 3671-3676
-
Oriana S, Cai Y, Bode J W, et al. Synthesis of trifunctionalized MMP2 FRET probes using a chemo-selectiveand late-stage modification of unprotected peptides[J]. OrgBiomol Chem, 2017, 15(8): 1792-1800.
-
Cheng H, Li S Y, Zheng H R, et al. Multi-förster resonanceenergy transfer-based fluorescent probe for spatiotemporalmatrix metalloproteinase-2 and caspase-3 imaging[J]. AnalChem, 2017, 89(8): 4349-4354.
-
Lee A, Kim S H, Lee H, et al. Visualization of MMP-2activity using dual-probe nanoparticles to detect potentialmetastatic cancer cells[J/OL]. Nanomaterials (Basel), 2018,8(2): 119[2020-01-01]. https://doi.org/10.3390/nano8020119.
-
Sun L, Xie S P, Qi J, et al. Cell-permeable, MMP-2activatable, nickel ferrite and his-tagged fusion protein selfassembled fluorescent nanoprobe for tumor magnetic targetingand imaging[J]. ACS Appl Mater Interfaces, 2017, 9(45):39209-39222.
-
Chen Y F, Hong J, Wu D Y, et al. In vivo mapping and assayof matrix metalloproteases for liver tumor diagnosis[J]. RSCAdv, 2016, 6(10): 8336-8345
-
Kwong G A, Maltzahn G V, Murugappan G, et al. Massencoded synthetic biomarkers for multiplexed urinarymonitoring of disease[J]. Nat Biotechnol, 2013, 31(1): 63-70.
-
Kwon E J, Dudani J S, Bhatia S N. Ultrasensitive tumourpenetrating nanosensors of protease activity[J/OL]. NatBiomed Eng, 2017, 1: 0054[2020-01-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621765/. Doi: 10.1038/s41551-017-0054.
-
Wang D P, Liang Y J, Duan L, et al. Bret probe for detecting extracellular matrix MMP13, gene, expression vector andconstruction method: wo, 2016/127302 A1[P].2016-08-18.
-
Khamlichi c E, Reverchon-Assadi F, Nadège H, et al.Bioluminescence resonance energy transfer as a methodto study protein-protein interactions: application to G protein coupled receptor biology[J/OL]. Molecules,2019, 24(3): 537[2020-01-01] https://www . mdpi.com/resolver?pii= molecules24030537. Doi:10.3390/molecules24030537.