专栏名称: PE星球
豆虫财经,一级市场严肃财经媒体。创始人为中国VC/PE领域资深媒体人韦亚军,韦先生曾任职于知名第三方股权投资服务机构“ChinaVenture投中集团”,拥有数十万一级市场忠实读者。
目录
相关文章推荐
51好读  ›  专栏  ›  PE星球

DeepSeek首次披露:理论上一天收入409万,成本利润率545%

PE星球  · 公众号  ·  · 2025-03-03 08:33

正文

“首席投资官 旗下新媒体平台,原“中国私募股权投资”

每日分享PE/VC行业最权威新闻资讯

来源: 雷递

文:乐天


摄影:Bob君




黄仁勋要坐不住了。




AI大模型DeepSeek日前在知乎贴文《DeepSeek-V3 / R1 推理系统概览》,DeepSeek称,在最近的 24 小时里(北京时间 2025/02/27 12:00 至 2025/02/28 12:00),DeepSeek V3 和 R1 推理服务占用节点总和,峰值占用为 278 个节点,平均占用 226.75 个节点(每个节点为 8 个 H800 GPU)。

“假定 GPU 租赁成本为 2 美金/小时,总成本为 $87,072/天。如果所有 tokens 全部按照 DeepSeek R1 的定价[1]计算,理论上一天的总收入为 $562,027(约409万元),成本利润率 545%。”

这意味着,DeepSeek理论上一天的利润为474,955美元(约350万元)。

据悉,DeepSeek R1 的定价:$0.14 / 百万输入 tokens (缓存命中),$0.55 / 百万输入 tokens (缓存未命中),$2.19 / 百万输出 tokens。

DeepSeek还指出,实际上没有这么多收入,因为 V3 的定价更低,同时收费服务只占了一部分,另外夜间还会有折扣。

硅基流动创始人、CEO袁进辉指出,“主要是V3/R1架构和其它主流模型差别太大了,由大量小Expert组成,导致瞄准其它主流模型结构开发的系统都不再有效,必须按照DeepSeek报告描述的方法才能达到最好的效率,而开发这样的系统难度很高,需要时间,幸好这周DeepSeek五连发已经把主要模块开源出来了,降低了社区复现的难度。”

“这些成果充分体现DeepSeek团队第一性原理思考方式和强悍的意志,他们应该是首先是基于某些原因想到了用这样的模型结构,然后发现这样的结构无论是训练还是推理,要做好都有非常大的工程挑战,这些问题在他们工程团队来说并不是搞不定的,关键是花那么大力气做完是否有大的收益呢,在最终结果出来前,谁也说不准,他们还是赌了,结果是赌对了。”

更有人评论称,怀疑DeepSeek的模型结构就是为了榨干系统和芯片的每一滴油水来设计的。

这可能让OpenAI CEO Altman(奥特曼)很不好想。外媒曾曝出,OpenAI在2024年可能面临惊人的50亿美元亏损,并可能在未来12个月内耗尽其现金储备。

DeepSeek也挑战了市场对AI、估值和高支出的叙述。 DeepSeek的高性能预算产品也“质疑未来在英伟达芯片和开发上花费数千亿美元的必要性”。

DeepSeek火爆以来,英伟达在2025年就失去了上涨的势头。 有行业人士评论称,DeepSeek这一波操作,英伟达等公司的股价可能又撑不住了。

以下是DeepSeek-V3 / R1 推理系统概览在知乎贴文:


DeepSeek-V3 / R1 推理系统的优化目标是:更大的吞吐,更低的延迟。为了实现这两个目标,我们的方案是使用大规模跨节点专家并行(Expert Parallelism / EP)。

首先 EP 使得 batch size 大大增加,从而提高 GPU 矩阵乘法的效率,提高吞吐。其次 EP 使得专家分散在不同的 GPU 上,每个 GPU 只需要计算很少的专家(因此更少的访存需求),从而降低延迟。但 EP 同时也增加了系统的复杂性。

复杂性主要体现在两个方面:EP 引入跨节点的传输。为了优化吞吐,需要设计合适的计算流程使得传输和计算可以同步进行。EP 涉及多个节点,因此天然需要 Data Parallelism(DP),不同的 DP 之间需要进行负载均衡。

因此,本文的主要内容是如何使用 EP 增大 batch size,如何隐藏传输的耗时,如何进行负载均衡。

大规模跨节点专家并行(Expert Parallelism / EP)

由于 DeepSeek-V3 / R1 的专家数量众多,并且每层 256 个专家中仅激活其中 8 个。模型的高度稀疏性决定了我们必须采用很大的 overall batch size,才能给每个专家提供足够的 expert batch size,从而实现更大的吞吐、更低的延时。需要大规模跨节点专家并行(Expert Parallelism / EP)。

我们采用多机多卡间的专家并行策略来达到以下目的:

Prefill:路由专家 EP32、MLA 和共享专家 DP32,一个部署单元是 4 节点,32 个冗余路由专家,每张卡 9 个路由专家和 1 个共享专家

Decode:路由专家 EP144、MLA 和共享专家 DP144,一个部署单元是 18 节点,32 个冗余路由专家,每张卡 2 个路由专家和 1 个共享专家

计算通信重叠

多机多卡的专家并行会引入比较大的通信开销,所以我们使用了双 batch 重叠来掩盖通信开销,提高整体吞吐。

对于 prefill 阶段,两个 batch 的计算和通信交错进行,一个 batch 在进行计算的时候可以去掩盖另一个 batch 的通信开销;

对于 decode 阶段,不同阶段的执行时间有所差别,所以我们把 attention 部分拆成了两个 stage,共计 5 个 stage 的流水线来实现计算和通信的重叠。

尽可能地负载均衡

由于采用了很大规模的并行(包括数据并行和专家并行),如果某个 GPU 的计算或通信负载过重,将成为性能瓶颈,拖慢整个系统;同时其他 GPU 因为等待而空转,造成整体利用率下降。因此我们需要尽可能地为每个 GPU 分配均衡的计算负载、通信负载。

1,Prefill Load Balancer

核心问题:不同数据并行(DP)实例上的请求个数、长度不同,导致 core-attention 计算量、dispatch 发送量也不同优化目标:各 GPU 的计算量尽量相同(core-attention 计算负载均衡)、输入的 token 数量也尽量相同(dispatch 发送量负载均衡),避免部分 GPU 处理时间过长

2,Decode Load Balancer

核心问题:不同数据并行(DP)实例上的请求数量、长度不同,导致 core-attention 计算量(与 KVCache 占用量相关)、dispatch 发送量不同优化目标:各 GPU 的 KVCache 占用量尽量相同(core-attention 计算负载均衡)、请求数量尽量相同(dispatch 发送量负载均衡)

3,Expert-Parallel Load Balancer

核心问题:对于给定 MoE 模型,存在一些天然的高负载专家(expert),导致不同 GPU 的专家计算负载不均衡优化目标:每个 GPU 上的专家计算量均衡(即最小化所有 GPU 的 dispatch 接收量的最大值)







请到「今天看啥」查看全文


推荐文章
南沙365  ·  南沙网2017年4月21日招聘信息
7 年前
法律读库  ·  来自莫高窟的浪漫——放妻书
7 年前
国信中房网  ·  中国房地产市场迎来租赁时代
7 年前
文学投稿小助手  ·  『仰望星空』全球征文大赛
7 年前