交易市场缺失的原因,也是相应企业产生的原因。由于市场交易携带的各种“交易成本”——搜寻信息、谈判交易、执行合同等等,在公司内部进行这些活动就会更加简单、高效。同理,比起在开放市场买卖数据,在公司内部生成并使用数据通常也更有利可图。
数据流固然充裕,但算不上大宗商品:每一个信息流都不尽相同,时效性、完备度各异。用一个经济术语来说,就是缺少“通用性”。因此,买方很难对一组数据出价:对于不同类型的数据,价值的可比性并不是很强。买卖双方都怕吃亏,这是抑制交易的因素。
直到近期,研究人员才开始开发定价的方式方法,咨询公司高德纳(Gartner)称之为“信息经济学”(infonomics)。加州大学圣迭戈分校的吉姆·舒尔特(Jim Short)是数据定价先驱者之一,致力于涉及数据定价的案例研究。
其中一个案例涉及到2015年申请破产的博彩集团凯撒娱乐(Caesars Entertainment)的一个分支。该分支最值钱的资产估值达10亿美元,据称就是客户数据——前17年加入该公司忠诚度计划的4500万客户的数据。
正因为数据定价如此之难,对一家公司来说,直接收购另一家公司可能更加干脆利落,哪怕它只对被收购方的数据感兴趣。
2015年,据报道,IBM斥资20亿美元收购Weather Company,就是冲着它海量的气象数据,以及收集气象数据的基础设施。另一个模糊地带是物物交换:英国国家医疗服务体系(NHS)的一部分已经和DeepMind(Alphabet的AI部门)达成一致,用匿名患者数据换取DeepMind从中提炼的医疗洞见。
和石油不同,数字信息是“非竞争性”的,也就是说,它们可以复制,同时被多人(或多个算法)使用,问题由此进一步复杂化。这意味着数据很容易被用于事先约定以外的其他用途。
另外,数据所有者也很难界定(以自动驾驶汽车为例,数据所有者可以是汽车厂商,可以是传感器供应商,也可以是乘客;假以时日,若自动驾驶汽车变成“自动所有”汽车,数据所有者还可以是汽车本身。)
“数据买卖枯燥至极,”高德纳的亚历山大·林登(Alexander Linden)说。因此,数据交易通常是双边交易和一事一例的,不适合三心二意者:数据合约通常洋洋几十页纸,法律术语密集,规定了数据应如何使用、如何保密。最近,一家大银行的一位高管就告诉林登,他可没时间签署这样的文件,哪怕数据价值不菲。
个人数据就更棘手了。“在一个监管健全的全国性信息市场上,个人信息是可以买卖的,卖方有权决定提供多少信息,”1996年,纽约大学肯尼斯·劳登(Kenneth Laudon)在一篇题为“市场与隐私”著名文章中写道。
不久前,世界经济论坛就提出了“数据银行账户”的概念,称个人数据应该“置于一个账户之中,在账户内进行控制、管理、交易和核算。”
这概念听着很优雅,但交易市场和数据账户都尚未实现。其问题跟企业数据恰恰相反:人们太容易交出个人数据、换取“免费”服务了。微软研究(Microsoft Research)经济学家格伦·威尔(Glen Weyl)说,交易条款几乎是无意间变成了标准。
继本世纪初网络泡沫破裂后,企业亟需打开财路,捷径之一就是收集数据,实现定向广告投放。直到最近,这些公司才意识到,数据还可以转化为无限量的AI服务。