专栏名称: 炼数成金前沿推荐
关注炼数成金,学习数据挖掘与分析技巧,了解最新快的数据分析课程信息。更多知识更多优惠,尽在炼数成金!招募天下好汉,一起炼数成金!
目录
相关文章推荐
十点读书会  ·  “建议周三设为永久节假日” ·  20 小时前  
蓝钻故事  ·  胡塞武装——中东最后的硬汉 ·  昨天  
悦读文摘  ·  每天思考一段话 ·  2 天前  
51好读  ›  专栏  ›  炼数成金前沿推荐

为什么你的数据分析成果总是难以落地?

炼数成金前沿推荐  · 公众号  ·  · 2018-02-26 17:55

正文

为什么你的数据分析成果总是难以落地?数据分析的价值总是远远低于预期?相信看完这篇文章,每个人都能找到一个属于自己的答案。以下为从事电力、军工、金融等行业担任数据分析师从业者的多年行业经验,希望能对大家有所帮助。


01 遵循数据分析标准流程

数据分析遵循一定的流程,不仅可以保证数据分析每一个阶段的工作内容有章可循,而且还可以让分析最终的结果更加准确,更加有说服力。一般情况下,数据分析分为以下几个步骤:


1)业务理解,确定目标、明确分析需求;


2)数据理解,收集原始数据、描述数据、探索数据、检验数据质量;


3)数据准备,选择数据、清洗数据、构造数据、整合数据、格式化数据;


4)建立模型,选择建模技术、参数调优、生成测试计划、构建模型;


5)评估模型,对模型进行较为全面的评价,评价结果、重审过程;


6)成果部署,分析结果应用。


02 明确数据分析目标

在数据分析前期,要做到充分沟通、理解业务规则、关注业务痛点、了解用户需求、换位思考,明确为什么要做数据分析,要达到一个什么目标。


03 业务与数据结合确定分析主题

以解决业务问题为目标,以数据现状为基础,确定分析主题。前期要做好充分的准备,以业务问题为导向,以业务梳理为重点,进行多轮讨论,分析主题避免过大,针对业务痛点,实现知现状、明原因、可预测、有价值。


04 多种分析方法结合

分析过程中尽量运用多种分析方法,以提高分析的准确性和可靠性。例如,运用定性定量相结合的分析方法对于数据进行分析;融合交互式自助BI、数据挖掘、自然语言处理等多种分析方法;高级分析和可视化分析相结合等。


05 选择合适的分析工具

工欲善其事,必先利其器,数据分析过程中要选择合适的分析工具做分析。SPSS、Rapidminer、R、Python等这几种工具都是业界比较认可的数据分析产品。


它们各有其优势,SPSS 较早进入国内市场,发展已经相对成熟,有大量参考书可供参考,操作上容易上手,简单易学。Rapidminer 易用性和用户体验做得很好,并且内置了很多案例用户可直接替换数据源去使用。R 是开源免费的,具有良好的扩展性和丰富的资源,涵盖了多种行业中数据分析的几乎所有方法,分析数据更灵活。Python,有各种各样功能强大的库,做数据处理很方便。


06 分析结论尽量图表化

经过严谨推导得出的结论,首先要精简明确,3-5条即可。其次要与业务问题结合,给出解决方案或建议方案。第三尽量图表化,要增强其可读性。


某企业KPI分析报告


数据分析过程中,除了以上六条原则,还要避免以下3种情况:


1)时间安排不合理

在开始分析工作之前,一定要做一个明确的进度计划,时间分配的原则是:数据收集、整理及建模占70%,数据可视化展现及分析报告占25%,其他占5%。


2)数据源选择不合理

一般企业中的数据来源有很多,SAP、TMS、CRM及各部门业务系统,每个渠道的数据各有特点。这时,应该慎重考虑从哪个渠道获取数据更加快捷有效。数据源选择不合理,不仅影响结论的可靠性,而且有返工的风险。


3)沟通不充分

无论是分析人员内部的沟通还是与外部相关人员的沟通,都是至关重要的。与外部人员沟通效不顺畅,可能造成前期需求不清,中间业务逻辑混乱,最终导致数据分析结果差强人意。与内部人员沟通效率低,可能造成分析进度滞后,分析工作开展不畅等诸多问题,直接影响分析效果。


对于数据分析师,分析经验的积累与专业知识的提升同样重要,因为有些问题不是只用专业知识就能解决的,所以在平时的工作中要有意识的去学习业务知识、掌握先进的分析工具,做一个有心人!


《机器学习及其matlab实现—从基础到实践》课程介绍常见的各种机器学习算法基本思想与原理,并以具体的案例形式引导学员自己动手实践,非常容易上手,是进阶数据挖掘的敲门砖。点击下方二维码报名课程