专栏名称: 计量经济圈
记录一个我们生活在其中的时代社会,囊括的主题如下:经济、社会、世界和计量工具。
目录
相关文章推荐
凤凰网财经  ·  曾经“最赚钱新股”,撬不动中产的钱包了? ·  2 天前  
计量经济圈  ·  新动向: 优青, 杰青想结题, ... ·  4 天前  
51好读  ›  专栏  ›  计量经济圈

哈佛教授在MIT的经济学家编程课, 5份课件可公开下载学习.

计量经济圈  · 公众号  · 财经  · 2025-01-08 00:00

主要观点总结

文章主要介绍了计量经济圈的活动和推荐阅读的内容,包括关注邮箱、社群交流、关于经济学家的编程课程以及相关前沿趋势如机器学习在经济学领域的应用等。

关键观点总结

关键观点1: 计量经济圈相关信息和资源分享。

文章提到了计量经济圈的各种资源,如code程序、宏微观数据库和各种软件等,并鼓励读者加入社群交流访问。

关键观点2: 关于Melissa Dell的信息和学术成果介绍。

文章提到了Dell作为小诺贝尔奖得主的经济学家编程课,以及她的学术研究过程和成果,包括关于如何做研究的建议、最具影响力的成名作等。

关键观点3: 机器学习在经济学领域的应用趋势和重要性。

文章多次提到机器学习在经济学研究中的应用,包括深度学习技术、分类器、回归模型等,以及机器学习对经济学研究的影响研究进展综述等内容。

关键观点4: 其他相关前沿话题和资源推荐。

文章还提到了其他前沿话题,如世界计量经济学会的新当选院士和新主席情况、合成控制法、政策评估方法等,并推荐了一些相关书籍和文章供读者阅读。


正文

凡是搞计量经济的,都关注这个号了

邮箱:[email protected]
所有计量经济圈方法论丛的code程序, 宏微观数据库和各种软件都放在社群里.欢迎到计量经济圈社群交流访问.

关于Melissa Dell,1.20年小诺贝尔奖得主Melissa的经济学家编程课, 课件尽快下载学习!2.2020年小诺奖得主Dell关于如何做研究, 对年轻经济学家的建议!3.Mita, 2020小诺奖RDD女王最具影响力的成名作, 附数据和计量程序,4.“RDD女王”获2020年小诺奖!她的RD数据, 程序, GIS和博士论文可下载!关于她学术研究过程的最全采访!,5.世界计量经济学会宣布2020年新当选院士和新主席, 国人当选情况在情理之中但意料之外!6.AER上用断点回归设计RDD的实证文章有哪些?含程序和code, 不看至少需要收藏一下!7.如何做量化研究的文献评述, 基于政权变更, 集体行动和经济发展,8.TOP5的JPE新任主编和编辑介绍, 提前了解其研究方法和擅长领域! 9.TOP5上天才般神作, 没有足够的洞察, 很难想出这样的实证策略10.她极度近视, 却凭该TOP5文掌控着关于殖民制度长期影响研究的话语权!

哈佛大学的Melissa Dell教授,前不久在Journal of Economic Literature上发表了一篇经济学和商学学者必读的综述性文章:“Deep learning for economists”

(参看:机器学习刚得诺奖, AEA迅速发了篇经济学家如何利用深度机器学习技术的综述!

文章的主题是指导经济学家如何在机器学习时代利用深度学习技术(包括分类器、回归模型、生成性人工智能和嵌入模型)来增强经济学研究的能力。

其实,Dell和她同事还在哈佛和MIT开设过课程“programming for economists”,共计5份slides,附在文后的二维码里了,可以直接下载参看。



长按以上二维码可以下载5份slides

关于机器学习:1.机器学习之KNN分类算法介绍: Stata和R同步实现(附数据和代码),2.机器学习对经济学研究的影响研究进展综述,3.回顾与展望经济学研究中的机器学习,4.最新: 运用机器学习和合成控制法研究武汉封城对空气污染和健康的影响! 5.Top, 机器学习是一种应用的计量经济学方法, 不懂将来面临淘汰危险!6.Top前沿: 农业和应用经济学中的机器学习, 其与计量经济学的比较, 不读不懂你就out了!7.前沿: 机器学习在金融和能源经济领域的应用分类总结,8.机器学习方法出现在AER, JPE, QJE等顶刊上了!9.机器学习第一书, 数据挖掘, 推理和预测,10.从线性回归到机器学习, 一张图帮你文献综述,11.11种与机器学习相关的多元变量分析方法汇总,12.机器学习和大数据计量经济学, 你必须阅读一下这篇,13.机器学习与Econometrics的书籍推荐, 值得拥有的经典,14.机器学习在微观计量的应用最新趋势: 大数据和因果推断,15.R语言函数最全总结, 机器学习从这里出发,16.机器学习在微观计量的应用最新趋势: 回归模型,17.机器学习对计量经济学的影响, AEA年会独家报道,18.回归、分类与聚类:三大方向剖解机器学习算法的优缺点(附Python和R实现),19.关于机器学习的领悟与反思,20.机器学习,可异于数理统计,21.前沿: 比特币, 多少罪恶假汝之手? 机器学习测算加密货币资助的非法活动金额! 22.利用机器学习进行实证资产定价, 金融投资的前沿科学技术! 23.全面比较和概述运用机器学习模型进行时间序列预测的方法优劣!24.用合成控制法, 机器学习和面板数据模型开展政策评估的论文!25.更精确的因果效应识别: 基于机器学习的视角,26.一本最新因果推断书籍, 包括了机器学习因果推断方法, 学习主流和前沿方法,27.如何用机器学习在中国股市赚钱呢? 顶刊文章告诉你方法!28.机器学习和经济学, 技术革命正在改变经济社会和学术研究,29.世界计量经济学院士新作“大数据和机器学习对计量建模与统计推断的挑战与机遇”,30.机器学习已经与政策评估方法, 例如事件研究法结合起来识别政策因果效应了!31.重磅! 汉森教授又修订了风靡世界的“计量经济学”教材, 为博士生们增加了DID, RDD, 机器学习等全新内容!32.几张有趣的图片, 各种类型的经济学, 机器学习, 科学论文像什么样子?33.机器学习已经用于微观数据调查和构建指标了, 比较前沿!34.两诺奖得主谈计量经济学发展进化, 机器学习的影响, 如何合作推动新想法!35.前沿, 双重机器学习方法DML用于因果推断, 实现它的code是什么?

下面这些短链接文章属于合集,可以收藏起来阅读,不然以后都找不到了。

8年,计量经济圈近2500篇不重类计量文章,

可直接在公众号菜单栏搜索任何计量相关问题,

Econometrics Circle




数据系列空间矩阵 | 工企数据 | PM2.5 | 市场化指数 | CO2数据 |  夜间灯光 官员方言  | 微观数据 | 内部数据
计量系列匹配方法 | 内生性 | 工具变量 | DID | 面板数据 | 常用TOOL | 中介调节 | 时间序列 | RDD断点 | 合成控制 | 200篇合辑 | 因果识别 | 社会网络 | 空间DID
数据处理Stata | R | Python | 缺失值 | CHIP/ CHNS/CHARLS/CFPS/CGSS等 |
干货系列能源环境 | 效率研究 | 空间计量 | 国际经贸 | 计量软件 | 商科研究 | 机器学习 | SSCI | CSSCI | SSCI查询 | 名家经验
计量经济圈组织了一个计量社群,有如下特征:热情互助最多前沿趋势最多、社科资料最多、社科数据最多、科研牛人最多、海外名校最多。因此,建议积极进取和有强烈研习激情的中青年学者到社群交流探讨,始终坚信优秀是通过感染优秀而互相成就彼此的。