if __name__ == '__main__': model = YOLO(model="ultralytics/cfg/models/v8/yolov8l-obb.yaml") # 从头开始构建新模型 print(model)
# Use the model results = model.train(data="DOTAv1.5.yaml", patience=0, epochs=300, device='0', batch=8, seed=42) # 训练模
如果想加载预训练模型,则使用:
model = YOLO("ultralytics/cfg/models/v8/yolov8l-obb.yaml").load("yolov8l-obb.pt") # build from YAML and transfer weights
或者直接加载预训练模型,如下:
model = YOLO("yolov8l-obb.pt") # load a pretrained model (recommended for training)
验证
from ultralytics import YOLO
# Load a model model = YOLO("yolov8n-obb.pt") # load an official model model = YOLO("path/to/best.pt") # load a custom model
# Validate the model metrics = model.val(data="dota8.yaml") # no arguments needed, dataset and settings remembered print(metrics.box.map) # map50-95(B) print(metrics.box.map50) # map50(B) print(metrics.box.map75) # map75(B) print(metrics.box.maps) # a list contains map50-95(B) of each category