专栏名称: 石杉的架构笔记
专注原创、用心雕琢!十余年BAT一线大厂架构经验倾囊相授
目录
相关文章推荐
上饶新闻  ·  敲黑板!《哪吒2》的隐藏知识点来了→ ·  15 小时前  
银幕穿越者  ·  《诡才知道》评分上涨 ... ·  昨天  
桃桃淘电影  ·  9.7分崩到6.4,年度最热新番玩脱了? ·  2 天前  
51好读  ›  专栏  ›  石杉的架构笔记

淘宝的高可用异地多活架构到底有多牛?

石杉的架构笔记  · 公众号  ·  · 2021-04-13 10:05

正文

点击上方蓝色“ 石杉的架构笔记”,选择“设为星标”

回复“PDF”获取独家整理的学习资料!

长按扫描上方二维码了解

来源: https://blog.dogchao.cn/?p=299


异地多活,作为一种高可用部署架构,成为大中型互联网公司的选择。像大家熟知的大型互联网公司,如阿里、腾讯、百度、网易、新浪等等都已经完成了异地多活的技术重构。

可以说,异地多活是互联网公司业务规模扩大后所必然要经历的阶段。那么如何解决高可用异地多活呢?


有状态服务


后台服务可以划分为两类,有状态和无状态。高可用对于无状态的应用来说是比较简单的,无状态的应用,只需要通过 F5 或者任何代理的方式就可以很好的解决。


后文描述的主要是针对有状态的服务进行分析。服务端进行状态维护主要是通过磁盘或内存进行保存,比如 MySQL 数据库,Redis 等内存数据库。


除了这两种类型的维护方式,还有 JVM 的内存的状态维持,但 JVM 的状态生命周期通常很短。


高可用的一些解决方案


高可用,从发展来看,大致经过了这几个过程:

  • 冷备

  • 双机热备

  • 同城双活

  • 异地双活

  • 异地多活


在聊异地多活的时候,还是先看一些其他的方案,这有利于我们理解很多设计的缘由。

冷备


冷备,通过停止数据库对外服务的能力,通过文件拷贝的方式将数据快速进行备份归档的操作方式。


简而言之,冷备,就是复制粘贴,在 Linux 上通过 cp 命令就可以很快完成。可以通过人为操作,或者定时脚本进行。


有如下好处:

  • 简单

  • 快速备份(相对于其他备份方式)

  • 快速恢复。只需要将备份文件拷贝回工作目录即完成恢复过程(亦或者修改数据库的配置,直接将备份的目录修改为数据库工作目录)。更甚,通过两次 mv 命令就可瞬间完成恢复。

  • 可以按照时间点恢复。比如,几天前发生的拼多多优惠券漏洞被人刷掉很多钱,可以根据前一个时间点进行还原,“挽回损失”。


以上的好处,对于以前的软件来说,是很好的方式。但是对于现如今的很多场景,已经不好用了,因为:
  • 服务需要停机。 N 个 9 肯定无法做到了。然后,以前我们的停机冷备是在凌晨没有人使用的时候进行,但是现在很多的互联网应用已经是面向全球了,所以,任何时候都是有人在使用的。

  • 数据丢失。 如果不采取措施,那么在完成了数据恢复后,备份时间点到还原时间内的数据会丢失。

    传统的做法,是冷备还原以后,通过数据库日志手动恢复数据。比如通过 redo 日志,更甚者,我还曾经通过业务日志去手动回放请求恢复数据。恢复是极大的体力活,错误率高,恢复时间长。

  • 冷备是全量备份。 全量备份会造成磁盘空间浪费,以及容量不足的问题,只能通过将备份拷贝到其他移动设备上解决。

    所以,整个备份过程的时间其实更长了。想象一下每天拷贝几个T的数据到移动硬盘上,需要多少移动硬盘和时间。并且,全量备份是无法定制化的,比如只备份某一些表,是无法做到的。


如何权衡冷备的利弊,是每个业务需要考虑的。

双机热备


热备,和冷备比起来,主要的差别是不用停机,一边备份一边提供服务。但还原的时候还是需要停机的。由于我们讨论的是和存储相关的,所以不将共享磁盘的方式看作双机热备。


①Active/Standby 模式


相当于 1 主 1 从,主节点对外提供服务,从节点作为 backup。通过一些手段将数据从主节点同步到从节点,当故障发生时,将从节点设置为工作节点。数据同步的方式可以是偏软件层面,也可以是偏硬件层面的。


偏软件层面的,比如 MySQL 的 master/slave 方式,通过同步 binlog 的方式;sqlserver 的订阅复制方式。


偏硬件层面,通过扇区和磁盘的拦截等镜像技术,将数据拷贝到另外的磁盘。偏硬件的方式,也被叫做数据级灾备;偏软件的,被叫做应用级灾备。后文谈得更多的是应用级灾备。


②双机互备


本质上还是 Active/Standby,只是互为主从而已。双机互备并不能工作于同一个业务,只是在服务器角度来看,更好的压榨了可用的资源。


比如,两个业务分别有库 A 和 B,通过两个机器 P 和 Q 进行部署。那么对于 A 业务,P 主 Q 从,对于 B 业务,Q 主 P 从。


整体上看起来是两个机器互为主备。这种架构下,读写分离是很好的,单写多读,减少冲突又提高了效率。


其他的高可用方案还可以参考各类数据库的多种部署模式,比如 MySQL 的主从、双主多从、MHA;Redis 的主从,哨兵,Cluster 等等。

同城双活


前面讲到的几种方案,基本都是在一个局域网内进行的。业务发展到后面,有了同城多活的方案。


和前面比起来,不信任的粒度从机器转为了机房。这种方案可以解决某个 IDC 机房整体挂掉的情况(停电,断网等)。


同城双活其实和前文提到的双机热备没有本质的区别,只是“距离”更远了,基本上还是一样(同城专线网速还是很快的)。双机热备提供了灾备能力,双机互备避免了过多的资源浪费。


在程序代码的辅助下,有的业务还可以做到真正的双活,即同一个业务,双主,同时提供读写,只要处理好冲突的问题即可。需要注意的是,并不是所有的业务都能做到。


业界更多采用的是两地三中心的做法。远端的备份机房能更大的提供灾备能力,能更好的抵抗地震,恐袭等情况。双活的机器必须部署到同城,距离更远的城市作为灾备机房。


灾备机房是不对外提供服务的,只作为备份使用,发生故障了才切流量到灾备机房;或者是只作为数据备份。原因主要在于:距离太远,网络延迟太大。

图 1:两地三中心


如上图,用户流量通过负载均衡,将服务 A 的流量发送到 IDC1,服务器集 A;将服务 B 的流量发送到 IDC2,服务器 B。


同时,服务器集 a 和 b 分别从 A 和 B 进行同城专线的数据同步,并且通过长距离的异地专线往 IDC3 进行同步。


当任何一个 IDC 当机时,将所有流量切到同城的另一个 IDC 机房,完成了failover。


当城市 1 发生大面积故障时,比如发生地震导致 IDC1 和 2 同时停止工作,则数据在 IDC3 得以保全。


同时,如果负载均衡仍然有效,也可以将流量全部转发到 IDC3 中。不过,此时 IDC3 机房的距离非常远,网络延迟变得很严重,通常用户的体验的会受到严重影响的。

图 2:两地三中心主从模式


上图是一种基于 Master-Slave 模式的两地三中心示意图。城市 1 中的两个机房作为 1 主 1 从,异地机房作为从。


也可以采用同城双主+Keepalived+VIP 的方式,或者 MHA 的方式进行failover。但城市 2 不能(最好不要)被选择为 Master。


异地双活


同城双活可以应对大部分的灾备情况,但是碰到大面积停电,或者自然灾害的时候,服务依然会中断。


对上面的两地三中心进行改造,在异地也部署前端入口节点和应用,在城市 1 停止服务后将流量切到城市 2,可以在降低用户体验的情况下,进行降级。但用户的体验下降程度非常大。


所以大多数的互联网公司采用了异地双活的方案:

图 3:简单的异地双活示意图


上图是一个简单的异地双活的示意图。流量经过 LB 后分发到两个城市的服务器集群中,服务器集群只连接本地的数据库集群,只有当本地的所有数据库集群均不能访问,才 failover 到异地的数据库集群中。


在这种方式下,由于异地网络问题,双向同步需要花费更多的时间。更长的同步时间将会导致更加严重的吞吐量下降,或者出现数据冲突的情况。


吞吐量和冲突是两个对立的问题,你需要在其中进行权衡。例如,为了解决冲突,引入分布式锁/分布式事务。


为了解决达到更高的吞吐量,利用中间状态、错误重试等手段,达到最终一致性;降低冲突,将数据进行恰当的 sharding,尽可能在一个节点中完成整个事务。


对于一些无法接受最终一致性的业务,饿了么采用的是下图的方式:

对于个别一致性要求很高的应用,我们提供了一种强一致的方案(Global Zone),Globa Zone 是一种跨机房的读写分离机制,所有的写操作被定向到一个 Master 机房进行,以保证一致性,读操作可以在每个机房的 Slave 库执行,也可以 bind 到 Master 机房进行,这一切都基于我们的数据库访问层(DAL)完成,业务基本无感知。


《饿了么异地多活技术实现(一)总体介绍》


也就是说,在这个区域是不能进行双活的。采用主从而不是双写,自然解决了冲突的问题。


实际上,异地双活和异地多活已经很像了,双活的结构更为简单,所以在程序架构上不用做过多的考虑,只需要做传统的限流,failover 等操作即可。


但其实双活只是一个临时的步骤,最终的目的是切换到多活。因为双活除了有数据冲突上的问题意外,还无法进行横向扩展。


异地多活


图 4:异地多活的示意图


根据异地双活的思路,我们可以画出异地多活的一种示意图。每个节点的出度和入度都是 4,在这种情况下,任何节点下线都不会对业务有影响。


但是,考虑到距离的问题,一次写操作将带来更大的时间开销。时间开销除了影响用户体验以外,还带来了更多的数据冲突。


在严重的数据冲突下,使用分布式锁的代价也更大。这将导致系统的复杂度上升,吞吐量下降。所以上图的方案是无法使用的。


回忆一下我们在解决网状网络拓扑的时候是怎么优化的?引入中间节点,将网状改为星状:

图 5:星状的异地多活


改造为上图后,每个城市下线都不会对数据造成影响。对于原有请求城市的流量,会被重新 LoadBalance 到新的节点(最好是 LB 到最近的城市)。


为了解决数据安全的问题,我们只需要针对中心节点进行处理即可。但是这样,对于中心城市的要求,比其他城市会更高。


比如恢复速度,备份完整性等,这里暂时不展开。我们先假定中心是完全安全的。







请到「今天看啥」查看全文