来源:DeepTech深科技
水资源短缺一直是一个限制经济和社会发展的致命难题。但大家也许有所不知的是,造成短缺的原因并非是水资源本身的匮乏,而是严重的水污染导致可利用的水资源变得弥足珍贵。
图丨新发明的微型机器人在水中游动
图丨马克思普克朗研究所的智能系统部门。马克思普克朗学会出过33位诺奖得主,以及各领域精英,也为我国培养了一批科研大牛
应对受污染的水源,传统的做法往往是使用氯或者其它消毒剂来进行消毒,但这样一来,固然细菌是可以被杀死,但它们的遗体仍旧会留存在水中,而且高浓度消毒剂所产生的副作用也会对人体造成一定的危害。
于是,研究人员想到了近年来在环境科学领域表现不凡的微型马达 (micromotor),它们利用简单的分子系统或化学机制,能够环境中实现自我推动。稍加改造,就可以制造出在水中吸附有机物、重金属等污染物质简单灵巧的微型机器人。
图丨纳米银微型机器人想象图
研究团队于是设计了这款具有纳米银涂层的球状微型机器人(Janus microbots decorated with silver nanoparticles)。
简而言之,这是一个直径为 15 微米的球状颗粒,它的一侧表面为镁,用于与水反应产生氢气小气泡来推动整个机器人的行进。而另外一面则依次附上了铁涂层、金涂层,和最表面的纳米银粒子,细菌一旦附着于球体表面,就会具有杀菌功效的纳米银杀死。
视频丨ACS Applied Materials & Interfaces对纳米银微型机器人的简介
图丨大肠杆菌电镜照片
那么这种微型机器人到底是如何工作的呢?它如何实现自我推动?如何实现杀菌?
正如上文所述,机器人的“推动燃料”是其尾部的金属镁。在水中,镁会与水分子反应生成镁离子、氢氧根和氢气,其化学式如下(初中内容,大家可以感受一下有多简单)。接着,这些氢气会以小气泡的形式从球体机器人尾部冒出来,从而推动机器人无规则游动。
而其杀菌功效主要来自纳米银微粒。在接触到细菌细胞膜时,纳米银能够释放对其有害的银离子,而细胞膜偏酸性的 pH 值则能加速银离子的释放,并使其附着于细菌表面。接着,银离子就会与细菌蛋白质中的硫醇基结合,并迅速破坏细胞膜的渗透性。最终,使细菌会溶解并死亡。
抛开细节不说,大家可以从浅显易懂的角度考虑——我们生活中经常使用银作为饰品、容器,就是源于该金属的杀菌功效。而该研究吧银制成纳米级的颗粒物,则大大增加了其反应面积和速度,提高了对细菌的杀伤力。
图丨细菌被银离子杀死
况且,细菌喜欢附着于金属表面。其细胞膜上的负电荷与金属表面存在相互作用(包括静电作用和范德华力)这样的性质使得球体头部的金涂层对细菌有了吸附的作用,最终分散在金涂层表面的纳米银得以一展身手。
而且,微型机器人的制备也并不复杂,说白了就是在镁金属球上裹上一层一层的涂料。
图丨纳米银微型机器人的制备过程
图丨纳米银微型机器人的电镜照片(左)和X光能谱(右)
下图是根据 X 光能谱绘制的元素分布图,描述了每种元素在球体上的分布,其顺序为:镁、金、铁、银。从图中我们能看到,镁在整个球体上均匀分布,而其他的元素则只占用于杀菌的一端,不愧是名副其实的“两面派”。
图丨根据X光能谱绘制的元素分布图,其顺序为:镁、金、铁、银
在机器人的工作完成之后,科学家通过荧光活性造影技术探查了水体的杀菌情况,上排绿色部分为存活细菌,而下排红色部分为死亡细菌。
测试包含了纯净水、纯纳米银微粒、和纳米银微型机器人三个对照组;很明显,纯净水中绝大部分细菌存活,纯纳米银溶液出现了一定量的死亡细菌,而纳米银微型机器人成功地杀死了绝大部分细菌。说明这种机制确实能将金属银的杀菌功效提高百倍。
图丨荧光活性造影技术对活细菌和死细菌的成像,绿色为存活细菌,红色为死细菌;从左到右依次为:水、纯纳米银颗粒、纳米银微型机器人
另一组荧光活性造影图像则体现了各层金属的功效。科学家分别把几种对照金属颗粒和微型机器人和放入污水中,并测试其周围的细菌进行荧光成像。
在没有加入纳米银加入的情况下,大量活细菌就粘附于镁、铁和金等金属之上,体现了这些材料对细菌的吸引机制。在只有纳米银的情况下,图中开始出现死去的细菌;事实证明,把具有粘附作用的铁、金涂层和纳米银结合起来的机器人完全体简直就是神器,周遭一片红,死伤无数啊……
图丨对几颗粒物的荧光活性造影:普通金属对细菌具有吸附作用,纳米银具有杀伤作用
而为了净化污水,小机器人需要在各种环境中工作。于是,研究者将其置于pH值不同的水中测试其游动情况。
由于机器人靠镁和氢氧根反应推动,在镁元素耗尽之时其寿命也就结束了。实验证明机器人在酸性的环境下游动最快,pH=5.0时速度为27μm每秒,而随着pH的增长速度下降,在pH=6.5时只能达到6μm每秒。
相对应地,镁元素消耗得约快,因此小机器人寿命越短。pH=5.0时其寿命只有12分钟,而pH=6.5时长达20分钟。
图丨水体pH值与机器人游速的关系(左)和pH值与持续时间的关系(右)
同时,科学家描绘了小机器人在pH值不同的溶液中的运动轨迹,测量间隔为10秒钟。酸性酸性溶液中的小机器人明显运行距离较远。
图丨不同pH值下机器人在10秒钟内游过的路径
图丨WHO对水中金属元素的标准
至于主要杀菌剂银离子,WHO对正常饮用水中银离子的标准是少于0.005μg/mL,但对于存在需要杀菌处理的污染饮用水标准为0.1μg/mL,而这款小机器人成功地达到了这一要求。
无论如何,这样一款原理易懂、制造简单的机器人,居然能在污水处理上大显身手,再次见证了工程师大神们的脑洞。
其实,发明创造离我们并不远,就像这个利用了金属与水反应原理工作的机器人告诉我们,初高中知识也可以成为创新的基石。希望科学家能够再接再厉,继续用脑洞改变世界。
-End-