本文主要介绍了大数据应用在不同行业的最佳实践案例,包括不同车型客户忠诚度的对比分析结果和客户满意度与价格、售后服务和产品等关键因素之间的相关性分析。文章还提到了数字化应用的重要性及其在实际问题中的应用,并提供了大量的相关案例和推荐书籍。
通过对比分析不同车型的客户忠诚度,强调了综合满意度与售后服务、产品和价格等因素的相关性,说明了问题解决的具体方法。
推荐了一系列关于大数据应用的书籍和资源,包括书籍内容概述和在线阅读链接,为读者提供了进一步学习的机会。
1、使用“多维度拆解分析方法”,对问题进行拆解,将一个复杂的问题细化成各个子问题按照“多维度拆解分析方法”,我们可以按照用户、产品、竞品这三个维度来拆解。分别对应公司的三个部门。用户对应运营部、产品对应产品部、竞品对应市场部。用户(运营):画出用户使用产品的路径图,然后从AARRR分析方法的5个环节去分析原因。
产品(产品部):这段时间销售的产品是否满足用户的需求。
竞品(市场部):竞品是不是在搞什么优惠活动,用户跑到竞争对手那里了
2、对拆解的每个部分,使用“假设检验分析方法”,找到哪里出现问题。分析的过程可以用对比分析方法等分析方法来辅助完成。3、在找到哪里出现问题后,多问自己几个为什么出现这个问题。然后使用相关性分析找出问题的原因。问题:与去年一年的月平均销售额相比,本年度最近一个月的新车销售额降低了大约15%。按照指标定义,将“新车销售总额”拆解为“新车销售数量”与“平均单价”。从“用户是否首次购买”这个维度,将“新车销售数量”拆解为“本品牌首次购买数量”和“本品牌再次购买数量”。“本品牌首次购买数量”,可以拆解为“从其他品牌流入”的用户(之前在其他品牌买过车)和“首次购买车辆”的用户。“本品牌再次购买数量”拆解为“再次购买时仍然选择了本品牌产品”的老用户,和“转为购买其他品牌用户”的老用户。客户忠诚度 = 老用户“再次购买时仍然选择本品牌产品”的车辆数/ “老用户再次购买的车辆总数”。这样,“本品牌再次购买数量”= “老用户再次购买车辆总数”* 客户忠诚度。根据“多维度拆解”图,我们可以对数据进行清洗,得到拆解后的各个细分数据。根据以上“多维度拆解图”,下面用“假设检验方法”对每个部分进行验证。得出结论:从图表可以看出,“平均单价”在这两年期间比较稳定,基本在平均值(200万日元)上下5%的范围内。至少在过去的一年里,没有出现过价格明显下降的情况。得出结论:从图表可以看出,本品牌首次购买数量基本维持稳定,而再次购买数量在过去的一年出现了减少。从数据上可以确定,“本品牌再次购买数量”是“新车销售总额”减少的主要原因之一。d.接下来对“本品牌内再次购买数量”的拆解对象进行分析一般拆解的维度可以是用户(年龄、职业、性别等),产品(车型),竞品(研究竞品是不是在搞什么优惠活动,用户跑到竞争对手那里了)。从哪个维度来比较客户忠诚度,才能找到问题发生的原因呢?按照不同的客户群体,例如不同年龄层的客户来分析客户忠诚度,会发现对不同的车型来说,人们的评价或喜爱程度并不一定与年龄有关。也就是说,不同的车型更能体现出人们对其评价或喜爱程度的不同。根据这一假设,可以从“产品(车型)”的维度来比较不同产品的客户忠诚度,在进行”产品(车型)”的维度来比较不同产品的客户忠诚度“时,我们要用到对比分析方法,下图是比较表格:从产品(车型)维度比较不同产品的客户忠诚度。对销售总额这个最根本的问题来说,是否存在对其影响较大的车型和并无太大影响的车型呢?虽然深入分析是好事,但如果分析的对象对问题整体的影响微不足道,这个工作就不会产生任何意义。根据对问题影响的大小来决定优先顺序和关注程度,也决定了根据分析结果采取的措施能够对解决问题产生多大贡献。从图表中,我们可以发现只有车型A的比例明显小于其他车型。如果将问题锁定为车型A,即使采取了有效的对策,对解决整体问题的影响仍然是有限的。因此可以暂且降低车型A的优先顺序。从图表中,我们发现只有车型A的客户忠诚度显著偏低,其他车型之间没有太大差别。接下来对不同车型客户忠诚度的变异系数进行比较,得到下图里的数据。从图表可以发现,虽然车型A的变异系数明显高于其他车型,但该车型数量较少,对整体的影响很小,因此在此就不涉及。从其他车型来看,车型D的波动较大。车型D的客户忠诚度与车型B、车型C几乎没有差别,所以很难将其认定为直接影响问题的关键。但从波动程度来看,车型D极有可能含有其他问题或风险,需要引起注意。根据前面确认的结果,暂且将车型A从比较对象中剔除,对其余3个车型的客户忠诚度随时间变化进从图片中可以发现,车型B和车型C的客户忠诚度均自一年前开始逐渐降低。也就是说,转为购买其他公司产品的比例提高了。具体数字是最近2年从约80%~90%减至50%~60%,降低了30~40个百分点。可见,拥有本品牌产品但需要再次购买车辆的人中,这2年期间有近30%被其他公司夺走了。从上面的分析结果,车型B与车型C是重点进一步分析的对象。分析到这一步,可以问自己一个问题:为什么车型B和车型C的客户忠诚度会出现下降?e.下图从“车型B的客户忠诚度为什么会下降“的疑问开始,提出假设,最终将问题归纳为“售后服务”“产品”和“价格”3个因素。在上图中,有一个原因是“因为其他公司推出了具有竞争力的产品”。对这个原因,无论如何深入分析,解决方法也只能是“开发更有竞争力的产品”等中长期措施,不能成为尽快增加销售的方法。因此,可以暂且将其优先顺序推后。也有可能这才是根本原因,所以我们不是无计可施就忽视它的存在,而是因为目前需要优先调查能在短期内采取对策的原因。与那些需要严密调查理论上的所有原因,写成报告的情况不同,工作中需要根据目的、制约条件和实际情况,采取灵活的措施。车型B和车型C的客户忠诚度下降是因为综合满意度下降。两者有相关性。证据:那么,根据前面的图,先来看综合满意度(月份平均)与客户忠诚度是否相关。因为没有区分不同车型的满意度数据,只有包括所有车型的综合满意度,所以需要计算.综合满意度与各车型客户忠诚度之间的相关系数。(下图是不同车型客户忠诚度与综合满意度的相关系数)但是如果只分析到这里,只看综合满意度,并不能决定“接下里应该采取哪些措施”。这样的话仍然无法对实际业务产生意义,所以接下来还要再次应用相关分析来探讨综合满意度之间和“售后服务”“产品”“价格”之间的相关程度。证据:下图是车型B的综合满意度和售后服务、产品、价格的相关系数。结论:通过上图可以发现,对车型B来说,综合满意度和价格高度相关(相关系数是-0.72),表示价格越高,顾客满意度就会越低。也就是说,与同类产品的价格比(相对而言是贵还是便宜)对综合满意度的影响较大。车型B的用户对价格比较敏感。下图是车型B的综合满意度和售后服务、产品、价格的相关系数。证据:下图是车型C的综合满意度和售后服务、产品、价格的相关系数结论:通过上图可以发现,对车型C来说,综合满意度高度和售后服务满意度高度相关(相关系数是0.59),表示售后服务越高,综合满意度高度也越高。同样是综合满意度,车型B的用户与车型C的用户所重视的关键点完全不同。当然,我们也可以越过综合满意度,直接考察每个车型的客户忠诚度与“售后服务”“产品”“价格”等数据的相关系数。
我们将前面所有的分析组织起来,就是下面这个图。它体现了对问题进行深入分析的整个过程。这个图还体现出,分析者并不是只分析了偶然想到的某些项目,而是通过这个构造避免了遗漏或重复,并对那些最终确定并非问题或原因的项目也进行了检验。另外,图片里对话框的内容解释了停止深入分析的原因。这样一来,听众就可以明白,分析者说到解决问题、进行分析或企划的目标时,“该工作的最终目的”这一重要始点始终没有动摇。锁定原因之后,接下来就是制定改进(解决)措施了。
18个行业,106个中国大数据应用最佳实践案例:
(1)《赢在大数据:中国大数据发展蓝皮书》;
免费试读:https://item.jd.com/12058569.html
(2)《赢在大数据:金融/电信/媒体/医疗/旅游/数据市场行业大数据应用典型案例》;
免费试读:https://item.jd.com/12160046.html
本册“微信读书”免费阅读:https://weread.qq.com/web/bookReview/list?bookId=f0532d707159f0dff058c4e
(3)《赢在大数据:营销/房地产/汽车/交通/体育/环境行业大数据应用典型案例》;
免费试读:https://item.jd.com/12160064.html
(4)《赢在大数据:政府/工业/农业/安全/教育/人才行业大数据应用典型案例》。
免费试读:https://item.jd.com/12058567.html
或点击“阅读原文”,购买“赢在大数据系列丛书”。
推荐文章
微信ID:SDx-SoftwareDefinedx
❶软件定义世界, 数据驱动未来;
❷ 大数据思想的策源地、数字化转型的指南针、创业者和VC的桥梁、政府和企业家的智库、从业者的加油站;
❸个人微信号:sdxtime,
邮箱:[email protected];
=>> 长按右侧二维码关注。
底部新增导航菜单,下载200多个精彩PPT,持续更新中!