【高密度、高可靠性:#我国科学家实现金刚石光学信息存储#】中国科学技术大学于 11 月 27 日发布博文,宣布中科院微观磁共振重点实验室在光学信息存储领域取得重要进展,实现高密度高可靠性金刚石光学信息存储。
得益于金刚石材料的超高硬度(为自然界最坚硬材料之一)以及其卓越的化学稳定性(如抗酸碱腐蚀等),存储在金刚石光盘中的数据极为稳定。
通过高温测试并结合阿伦尼乌斯定律预测信息单元的稳定性,即使在 200℃高温环境下,金刚石中数据的存储寿命可以远超百年。同时,该存储无需任何维护(如温湿度控制等),不产生数据存储的能耗。
为了实现高密度高可靠性存储,研究人员发展了基于飞秒脉冲加工的快速高精度三维缺陷制备技术,单个飞秒脉冲(约 200 飞秒)即可完成对存储单元的制备,信息写入精度高于 99.9%,已达到蓝光光盘国家标准。
研究人员还进一步发展了二维、三维的并行读出技术,可同时实现对上万比特高效读出。当前,存储单元的尺寸可达到 69nm(约为波长的十二分之一),单元间隔在 1 微米左右,存储密度达到 Terabit / cm3 量级,比蓝光光盘存储密度提高三个量级。(中国科学技术大学)
得益于金刚石材料的超高硬度(为自然界最坚硬材料之一)以及其卓越的化学稳定性(如抗酸碱腐蚀等),存储在金刚石光盘中的数据极为稳定。
通过高温测试并结合阿伦尼乌斯定律预测信息单元的稳定性,即使在 200℃高温环境下,金刚石中数据的存储寿命可以远超百年。同时,该存储无需任何维护(如温湿度控制等),不产生数据存储的能耗。
为了实现高密度高可靠性存储,研究人员发展了基于飞秒脉冲加工的快速高精度三维缺陷制备技术,单个飞秒脉冲(约 200 飞秒)即可完成对存储单元的制备,信息写入精度高于 99.9%,已达到蓝光光盘国家标准。
研究人员还进一步发展了二维、三维的并行读出技术,可同时实现对上万比特高效读出。当前,存储单元的尺寸可达到 69nm(约为波长的十二分之一),单元间隔在 1 微米左右,存储密度达到 Terabit / cm3 量级,比蓝光光盘存储密度提高三个量级。(中国科学技术大学)