专栏名称: 研之成理
夯实基础,让基础成就辉煌;传递思想,让思想改变世界。“研之成理科研平台”立足于科研基础知识与科研思想的传递与交流,旨在创建属于大家的科研乐园!主要内容包括文献赏析,资料分享,科研总结,论文写作,软件使用等。科研路漫漫,我们会一路陪伴你!
目录
相关文章推荐
研之成理  ·  吉林大学/中山大学合作,Nature ... ·  昨天  
募格学术  ·  师范大学,冲刺申博! ·  2 天前  
51好读  ›  专栏  ›  研之成理

北航侯慧龙副教授,大工王译教授各发一篇一作Science!

研之成理  · 公众号  · 科研  · 2019-12-02 07:00

正文

-1-

2019年11月29日,北京航空航天大学航空科学与工程学院侯慧龙副教授以第一作者身份在世界顶级期刊《Science》发表了最新研究成果,文章标题为《Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing》。
空调和制冷每年消耗全世界约五分之一的电力资源。更高效、更环保的制冷技术在最近十几年发展迅速 (Science 311, 1270-1271 (2006); Nature Materials, 13, 439-450 (2014); Science 355, 1062-1066 (2017); Nature 567, 506-510 (2019))。固态制冷技术(包含磁热制冷、机械热制冷和电热制冷及其他)近年来引起关注。应力制冷(或称弹热制冷,是机械热制冷的形式之一)是通过外应力场的施加和移除可逆地改变材料的晶体结构对称性以引起材料放热和吸热。应力制冷技术在2012年发明于美国马里兰大学,因其巨大的潜热效能,在2014年美国能源部统计的取代蒸气压缩式制冷的17种可选技术中居首。同时,应力制冷样机和应力蓄热热泵也在不断开发,以期接近实际应用。然而,应力制冷材料的热力滞后会约束制冷系统的效率,并且其对制冷性能的长期稳定性影响尚未得到解决。
增材制造镍钛合金能够制造出高效热力学性能、超窄滞后的应力制冷材料。通过精巧设计的“工艺-微结构-属性-性能”策略,利用粉末激光定向能量沉积技术中的局部熔融和快速冷却的特点,调节元素粉末的比例达到近共熔成分混合,实现在二元合金基体中镶嵌富镍的金属间化合物的纳米复合微结构。所获得的应力制冷材料在准线性应力-应变行为中展现出极小的应力滞后,相比于通常的情况其材料效率提高了4到7倍,并且在一百万次循环中拥有可重复的应力制冷性能。先进的原位加载同步X射线衍射表征手段辅以微观力学模型揭示了二元合金基体和富镍金属间化合物的相互作用机制。基于实验观测创建了应力制冷材料输入能量耗散率与功能失效循环之间的唯象相关性,并且初步的实验统计显示该相关性可普适于固态制冷材料,首创性地为长寿命材料的制造、选取和工程设计提供科学依据,对构筑高效、稳定的固态制冷技术具有重要的科学与技术意义。增材制造应力制冷材料可以实现对具有长寿命、高性能的金属制冷剂进行独特的微观结构控制。抗疲劳、高性能镍钛合金的获得展示了增材制造在优化固态制冷技术的潜力。
图为增材制造抗疲劳、高性能应力制冷材料的示意图。(右上)粉末送料机用以提供元素粉末并加以混合,形成近共熔成分;激光在聚焦时提供能量;(中间)混合的元素粉末在激光的作用下熔融,形成局部熔池;随着局部熔池的不间断移动,构件的不同部位依次形成;(背景)作为范例展示,蜂窝状构件的形状和高度依次形成。
近日,这项工作发表在《Science》上。该工作是由北航航空科学与工程学院2019年9月引进的青年教师侯慧龙 (个人主页超链接( http://shi.buaa.edu.cn/hougroup )) 以第一作者身份在美国马里兰大学与其合作者完成,得到了美国能源部高级能源研究计划署、美国能源部先进制造办公室、美国能源部科学办公室、美国国家科学基金会等的资助。后续即将开展的研究工作将立足于北京航空航天大学,服务于国家在航空航天飞行器特种制冷技术的重大需求,结合航空科学与工程学院特色专业(包括飞行器结构强度和人机与环境工程),并与材料科学与工程学院、机械工程及自动化学院以及国内外相关单位合作进行。
文章信息: Huilong Hou, et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science 366, 1116-1121 (2019).
文章链接:https://science.sciencemag.org/content/366/6469/1116

-2-
2019年11月29日,大连理工大学物理学院、三束材料改性教育部重点实验室王译教授与新加坡国立大学Hyunsoo Yang教授,在世界顶级期刊Science (《科学》)上发表重要工作: 利用自旋波翻转磁矩实现数据存储与逻辑运算。

遵循摩尔定律飞速发展的现代电子器件尺寸越来越小,芯片中因电荷高速运动和频繁碰撞引发严重发热,不但造成高能耗,同时限制芯片处理速度与集成密度的提高,成为阻碍当前器件发展的一个严重问题。 在日常生活中,我们都能切身体会到电子产品耗电、发热而带来的严重不便。
聚焦上述关键科学技术问题,王译教授与新加坡国立大学Hyunsoo Yang教授创新性提出利用自旋波(准粒子: 磁振子)来驱动磁矩翻转,实现芯片“0”和“1”的信息存储和逻辑运算,这完全不同于以往通过有热耗散电子自旋注入的传统技术。 自旋波不局限于电子导体,可以以“波”的方式在多种介质中无热耗散、低阻尼、长距离传播自旋信息,重要的是该过程不需要导电电荷参与,因此这种新机制可以从根本上突破传统芯片发热、耗电等瓶颈。
图A-B: 磁振子转矩(A)与传统电子自旋转矩(B)对比示意图; 图C: 磁振子转矩器件光学照片; 图D: 磁振子转矩驱动NiFe磁矩翻转器件示意图; 图E: Bi2Se3/NiO/NiFe器件的自旋转矩铁磁共振测量示意图; 图F: 磁振子转矩强度与NiO厚度关系; 图G: 不同厚度NiO器件中磁振子转矩与温度的关系; 图H: 磁振子转矩效应驱动磁矩翻转磁光克尔成像。
在前期工作基础上,他们设计了异质薄膜结构,反铁磁绝缘体NiO作为磁振子高效传输通道,拓扑绝缘体Bi2Se3作为高强度磁振子产生源,开创性利用磁振子转矩效应实现商业广泛应用的NiFe和CoFeB铁磁薄膜自旋磁矩180°翻转。 器件在室温下运行,磁振子转矩效应显著,预期通过进一步调控器件,磁振子转矩强度有望进一步增强。
此工作实验证实了自旋波可有效翻转自旋磁矩,开辟了实现低功耗、高速度信息存储和逻辑运算芯片的新途径,必将发展磁振子学新研究方向,激发磁振子器件广泛探索,促进后摩尔时代器件革新。 该工作中,我校王译教授为第一作者,成果部分得到大连理工大学人才启动资金的资助。
王译,物理学院教授、博士生导师。 大连理工大学“星海青千”人才获得者,入选2018年“大连市重点产业紧缺人才”。 连续12年从事自旋电子学器件物理及应用研究。 目前重点开展自旋轨道矩磁随机存储器的基础应用研究。
王译教授在Science (一作),Physical Review Letters(一作),Nature Communications(一作),Nano Letters(一作),Nature Materials,Nature Nanotechnology,Nature Physics,Advanced Materials等国际著名期刊发表SCI论文24篇。 现担任Physics Review Letters, Nano Letters,ACS Nano, Journal of Magnetism and Magnetic Materials, IEEE Transactions on Magnetic等国际期刊审稿人。
本文转载自:青塔,北航新闻网,大连理工大学官网


研之成理各版块内容汇总:
1. 仪器表征基础知识汇总
2. SCI论文 写作专题汇总
3. Origin/3D绘图等科学可视化汇总
4. 理论 化学 基础知识汇总






请到「今天看啥」查看全文