A)σ1>σ2>σ3
B)σ1
C)σ1=σ2=σ3
D)以上皆否
答案:(B)
从正态分布的定义来看,我们知道所有这3种形状的曲线下的面积为1。 曲线3更平坦,因而更分散(大多数值在40-160之间),因此它的标准差最大。 类似地,曲线1的范围非常窄,并且所有值都在80-120的小范围内。 因此,曲线1的标准差最小。
13)在98%的置信区间,双尾检验Z的临界值是多少?
A)+/- 2.33
B)+/- 1.96
C)+/- 1.64
D)+/- 2.55
答案:(A)
我们需要查看Z值表来回答这个问题。 对于双尾检验和98%置信区间,我们应该检查Z值之前的面积为0.99,因为平均值的左侧和右侧分别是1%。 因此,我们应该检查区域 > 0.99的Z值。 该值为+/- 2.33。
14)[对错判断]标准正态分布的曲线是对称的,对称轴为0,曲线下面的面积为1。
A)正确
B)错误
答案:(A)
由正态分布曲线的定义得知,曲线下面的面积为1,对称轴为零, 平均值、中位数和众数都等于0。平均值左侧的面积等于平均值右侧的面积。 因此它是对称的。
问题背景15-17
研究表明,在学习时听音乐可以提高记忆力。 为了证明这一点,研究人员获得了36名大学生的样本,给他们做了一个标准记忆测试,同时听一些背景音乐。 在正常情况下(没有音乐),测试得到的平均分为25,标准偏差为6。实验后样本(有音乐)的平均分为28。
15)这种情况下的零假设是什么?
A)学习时听音乐不会影响记忆力。
B)学习时听音乐可能会使记忆力退化。
C)在学习中听音乐可能会提高记忆力。
D)在学习期间听音乐不会提高记忆力,还可能会使记忆力变得更糟。
答案:(D)
零假设通常是假设声明,测量现象彼此之间没有关系。 这里的零假设是听音乐和记忆力的提高之间没有关系。
16)什么是第一类错误?
A)学习时听音乐可以提高记忆力,且该结论正确。
B)学习时听音乐可以提高记忆力,但实际上记忆力并没有提高。
C)学习时听音乐不会提高记忆力,但实际上记忆力提高了。
答案:(B)
第一类错误意味着当假设的结论实际上为真时,我们却拒绝了零假设。 这里的零假设是音乐不会提高记忆力。 第一类错误是我们拒绝了零假设,也就是说结论显示音乐提高了记忆力,但实际上它并没有提高记忆力。
17)执行Z检验后,我们可以得出什么结论?
A)听音乐不会提高记忆力。
B)听音乐会显著提高记忆力。
C)信息不足以作任何结论。
D)以上都不对
答案:(B)
我们在给定的情况下进行Z检验。 我们知道零假设是听音乐不会提高记忆力。
备择假设是听音乐确实提高了记忆力。
在这种情况下,标准误差即: