专栏名称: 大数据D1net
大数据D1net隶属于企业网D1Net,提供大数据存储、大数据分析、大数据挖掘等有关大数据的最新技术和资讯。
目录
相关文章推荐
大数据文摘  ·  风投式思维:哪吒2和DeepSeek背后的共 ... ·  4 天前  
数据派THU  ·  政务系统拥抱DeepSeek,会带来哪些改变? ·  2 天前  
CDA数据分析师  ·  Deepseek爆火,CDA持证人如何确保不 ... ·  3 天前  
数据派THU  ·  牛津大学等提出P-sLSTM,释放LSTM在 ... ·  4 天前  
51好读  ›  专栏  ›  大数据D1net

常见的大数据分析模型

大数据D1net  · 公众号  · 大数据  · 2019-08-05 14:19

正文

点击上方“ 蓝色字体 ”,选择 “ 设为星标

关键讯息,D1时间送达!



今天我们主要为大家讲解在做大数据可视化时,有哪些常见的到数据分析模型。



数据模型可以从两个角度来区分: 数据和业务。


一、数据模型


统计数据视角的实体模型通常指的是统计分析或大数据挖掘、深度学习、人工智能技术等种类的实体模型,这些模型是从科学研究视角去往界定的。


1、降维


对大量的数据和大规模的数据进行数据挖掘时,往往会面临“维度灾害”。 数据集的维度在无限地增加,但由于计算机的处理能力和速度有限,此外,数据集的多个维度之间可能存在共同的线性关系。 这会立即造成学习模型的可扩展性不足,乃至许多那时候优化算法结果会无效。 因而,人们必须减少层面总数并减少层面间共线性危害。


数据维也称为数据归约或数据约减。 它的目的就是为了减少数据计算和建模中涉及的维数。 有两种数据降维思想:一种是基于特征选择的降维,另一种是基于维度变换的降维。


2、回归


回归是一种数据分析方法,它是研究变量X对因变量Y的数据分析。 我们了解的最简答的回归模型就是一元线性回归(只包含一个自变量和因变量,并且量在这的关系可以用一条直线表示)。


回归分析根据自变量的数量分为单回归模型和多元回归模型。 根据影响是否是线性的,可以分为线性回归和非线性回归。


3、聚类


我们都听过“物以类聚,人以群分”这个词语,这个是聚类分析的基本思想。 聚类分析法是大数据挖掘和测算中的基础每日任务,聚类分析法是将很多统计数据集中化具备“类似”特点的统计数据点区划为一致类型,并最后转化成好几个类的方式。 大量数据集中必须有相似的数据点。 基于这一假设,可以区分数据,并且可以找到每个数据集(分类)的特征。


4、分类


分类算法根据对已知类型训炼集的测算和剖析,从文中发掘类型标准,为此分析新统计数据的类型的类别优化算法。 分类算法是解决分类问题的一种方法,是数据挖掘、机器学习和模式识别的一个重要研究领域。


5、关联


关联规则学习根据寻找最能解释数据变量之间关系的规则,在大量多元数据集中找到有用的关联规则。 这是一种从大量数据中找出各种数据之间关系的方法。 此外,它还可以挖掘基于时间序列的各种数据之间的关系。


6、时间序列


时间序列是一种用于研究数据随时间变化的算法,是一种常用的回归预测方法。 原则是事物的连续性。 所谓连续性,是指客观事物的发展具有规律性的连续性,事物的发展是按照其内在规律进行的。 在一定的条件下,只要规则作用的条件不发生质的变化,事物的基本发展趋势就会持续到未来。


7、异常数据检测


在大多数数据挖掘或数据工作中,异常值将被视为“噪声”,并在数据预处理过程中消除,以避免其对整体数据评估和分析挖掘的影响。 然而,在某些情况下,如果数据工作的目标是关注异常值,这些异常值将成为数据工作的焦点。


数据集中的异常数据通常被称为异常点、异常值或孤立点等。 典型的特征是这些数据的特征或规则与大多数数据不一致,表现出“异常”的特征。 检测这些数据的方法称为异常检测。


二、业务模型


业务流程实体模型指的是对于某一业务流程情景而界定的,用以解决困难的某些实体模型,这种实体模型跟上边实体模型的差别取决于情景化的运用。


1、会员数据化运营分析模型


类型: 会员细分模型、会员价值模型、会员活跃度模型、会员流失预测模型、会员特征分析模型、市场营销回应预测模型。


2、商品数据化运营分析模型


类型: 商品价格敏感度模型、新产品市场定位模型、销售预测模型、商品关联销售模型、异常订单检测模型、商品规划的最优组合。


3、流量数据化运营分析模型


类型: 流量波动检测、渠道特征聚类、广告整合传播模型、流量预测模型。


4、内容数据化运营分析模型


类型: 情感分析模型、搜索优化模型、文章关键字模型、主题模型、垃圾信息检测模型。


(来源: 今日头条)


如果您在企业IT、网络、通信行业的某一领域工作,并希望分享观点,欢迎给企业网D1Net投稿 投稿邮箱:[email protected]

点击 蓝色 字体






请到「今天看啥」查看全文