我个人对陷阱的定义是这样的:代码看起来可以工作,但不是以你“想当然“”的方式。如果一段代码直接出错,抛出了异常,我不认为这是陷阱。比如,Python程序员应该都遇到过的“
UnboundLocalError”, 示例:
对于
“
UnboundLocalError”,还有更高级的版本:
可能对于很多python新手来说,这个Error让人摸不着头脑。但我认为这不算陷阱,因为这段代码一定会报错,而不是默默的以错误的方式运行。不怕真小人,就怕伪君子。我认为缺陷就好比伪君子。
那么Python中哪些真正算得上陷阱呢?
第一:以mutable对象作为默认参数
这个估计是最广为人知的了,Python和其他很多语言一样,提供了默认参数,默认参数确实是个好东西,可以让函数调用者忽略一些细节(比如GUI编程,Tkinter,QT),对于lambda表达式也非常有用。但是如果使用了可变对象作为默认参数,那么事情就不那么愉快了。
惊喜不惊喜?!究其原因,python中一切都是对象,函数也不列外,默认参数只是函数的一个属性。而默认参数在函数定义的时候已经求值了。
python docoment 给出了标准的解决办法:
第二: x += y vs x = x + y
一般来说,二者是等价的,至少看起来是等价的(这也是陷阱的定义 — 看起来都OK,但不一定正确)。
被光速打脸了?
前者x指向一个新的对象,后者x在原来的对象是修改,当然,那种效果是正确的取决于应用场景。至少,得知道,二者有时候并不一样
第三,神奇的小括号–()
小括号(parenthese)在各种编程语言中都有广泛的应用,python中,小括号还能表示元组(tuple)这一数据类型, 元组是immutable的序列。
但如果只有一个元素呢
神奇不神奇,如果要表示只有一个元素的元组,正确的姿势是:
第四:生成一个元素是列表的列表
这个有点像二维数组,当然生成一个元素是字典的列表也是可以的,更通俗的说,
生成一个元素是可变对象的序列
很简单嘛:
看起来很不错,简单明了,but
我猜,这英国不是你预期的结果吧,究其原因,还是因为python中list是可变对象,上述的写法大家都指向的同一个可变对象,正确的姿势
第五,在访问列表的时候,修改列表
列表(list)在python中使用非常广泛,当然经常会在访问列表的时候增加或者删除一些元素。比如,下面这个函数,试图删掉列表中为3的倍数的元素:
测试一下
好像没什么错,不过这只是运气好
上面的例子中,6这个元素就没有被删除。如果在modify_lst函数中print idx, item就可以发现端倪:lst在变短,但idx是递增的,所以在上面出错的例子中,当3被删除之后,6变成了lst的第2个元素(从0开始)。在C++中,如果遍历容器的时候用迭代器删除元素,也会有同样的问题。
如果逻辑比较简单,使用list comprehension是不错的注意
第六,闭包与lambda
这个也是老生长谈的例子,在其他语言也有类似的情况。先看一个例子:
create_multipliers函数的返回值时一个列表,列表的每一个元素都是一个函数 -- 将输入参数x乘以一个倍数i的函数。预期的结果时0,2,4,6,8. 但结果是5个8,意外不意外。
由于出现这个陷阱的时候经常使用了lambda,所以可能会认为是lambda的问题,但lambda表示不愿意背这个锅。问题的本质在与python中的属性查找规则,LEGB(local,enclousing,global,bulitin),在上面的例子中,i就是在闭包作用域(enclousing),而
Python的闭包是
迟绑定
, 这意味着闭包中用到的变量的值,是在内部函数被调用时查询得到的。
解决办法也很简单,那就是变闭包作用域为局部作用域。
第七,定义__del__
大多数计算机专业的同学可能都是先学的C、C++,构造、析构函数的概念应该都非常熟。于是,当切换到python的时候,自然也想知道有没有相应的函数。比如,在C++中非常有名的RAII,即通过构造、析构来管理资源(如内存、文件描述符)的声明周期。那在python中要达到同样的效果怎么做呢,即需要找到一个对象在销毁的时候一定会调用的函数,于是发现了__init__, __del__函数,可能简单写了两个例子发现确实也能工作。但事实上可能掉进了一个陷阱,在python documnet是有描述的
Circular references which are garbage are detected when the option cycle detector is enabled (it’s on by default), but can only be cleaned up if there are no Python-level
__del__()
methods involved.
简单来说,如果在循环引用中的对象定义了__del__,那么python gc不能进行回收,因此,存在内存泄漏的风险