专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
爱可可-爱生活  ·  【[395星]chromem-go:为Go语 ... ·  13 小时前  
宝玉xp  ·  Lex Fridman ... ·  21 小时前  
宝玉xp  ·  OpenAI 今天下午在 Reddit ... ·  4 天前  
AI前线  ·  Cursor神器助力,三月速成AI ... ·  5 天前  
机器之心  ·  进击的DeepSeek,一夜之间登陆Micr ... ·  5 天前  
51好读  ›  专栏  ›  机器学习研究会

理解卷积神经网络的利器:9篇重要的深度学习论文

机器学习研究会  · 公众号  · AI  · 2018-03-20 22:17

正文

云栖君导读:本文将介绍过去五年内发表的一些重要论文,并探讨其重要性。论文1—5涉及通用网络架构的发展,论文6—9则是其他网络架构的论文。点击原文即可查看更详细的内容哦。


一、AlexNet(2012)


AlexNet是卷积神经网络架构的起源(尽管可能会有人认为,1998年Yann LeCun发表的论文才是真正的开创性出版物)。这篇名为“基于深度卷积网络ImageNet分类https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf?spm=a2c4e.11153959.blogcont552464.16.2a1e53d0ousmlV&file=4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)”的论文总共被引用6,184次,被公认为是该领域最具影响力的论文之一。在2012年的ImageNet大规模视觉识别挑战赛中,Alex Krizhevsky等人创建的“大而深的卷积神经网络”取得了大赛冠军——将分类误差从26%降至15%,这是一个惊人的改进,几乎让所有的计算机视觉社区为之震撼。从那时起,卷积神经网络被广泛传播,成了一个家喻户晓的名字。


该论文讨论了AlexNet架构的网络结构。与现代架构相比,AlexNet使用了相对简单的网络结构:由5个卷积层、最大池化层、drop-out层和3个全连接层组成。他们设计的网络可用于对1000个类别进行分类。



主要论点








请到「今天看啥」查看全文