一、AlexNet(2012)
AlexNet是卷积神经网络架构的起源(尽管可能会有人认为,1998年Yann LeCun发表的论文才是真正的开创性出版物)。这篇名为“基于深度卷积网络ImageNet分类(https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf?spm=a2c4e.11153959.blogcont552464.16.2a1e53d0ousmlV&file=4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)”的论文总共被引用6,184次,被公认为是该领域最具影响力的论文之一。在2012年的ImageNet大规模视觉识别挑战赛中,Alex Krizhevsky等人创建的“大而深的卷积神经网络”取得了大赛冠军——将分类误差从26%降至15%,这是一个惊人的改进,几乎让所有的计算机视觉社区为之震撼。从那时起,卷积神经网络被广泛传播,成了一个家喻户晓的名字。
该论文讨论了AlexNet架构的网络结构。与现代架构相比,AlexNet使用了相对简单的网络结构:由5个卷积层、最大池化层、drop-out层和3个全连接层组成。他们设计的网络可用于对1000个类别进行分类。