2013年,生物物理学家杰里米·英格兰(Jeremy England)提出的一种新理论掀起了波澜,
他认为,生命的起源是热力学的必然结果。
他推导的方程式表明,在一定条件下,原子团会自然而然地重组自身,以便消耗更多的能量,从而促进能量的持续耗散以及“熵”(即宇宙中无序状态)的增加。
英格兰说,这种重组效应——他称之为“耗散驱动型适应性”——促进了包括生命体在内的复杂结构的进化。他在2014年接受采访时表示,生命的存在并不神秘,也不是凭运气,而是遵循着一般的物理学原理,“就像石头必定会朝山下滚一样,是意料之中的事情。”
此后,这位35岁的麻省理工学院副教授就一直在通过计算机模拟,验证自己的想法。这些研究中最重要的两项成果已于7月发表,分别刊登在《美国国家科学院学报》和《物理评论快报》上。两项计算机实验的结果似乎都对英格兰“耗散驱动型适应性”的总体观点提供了支持,不过,它对于破解现实中生命诞生的奥秘仍然停留在推测阶段。
“这显然是一项开创性的研究。”德国科隆大学统计物理学家、定量生物学家迈克尔·莱西格(Michael Lässig)如此评价《美国国家科学院学报》的那篇论文。这篇论文的作者还包括麻省理工博士后研究员乔丹·霍洛维茨(Jordan Horowitz)。
“这项案例研究只是针对一个小系统中的一组给定规则,所以,现在判断它能否被推而广之,可能有点为时过早。”莱西格说,“但显而易见,人们的兴趣在于,
他们想知道这对生命来说意味着什么。
”
该论文抛开了细胞和生物学的具体细节,描述了一种更简单的化学物质模拟系统,让异常结构有可能在其中自发出现——在英格兰看来,这种现象正是生命起源背后的驱动力量。
在论文提到的实验中,英格兰模拟的化学试剂包含了25种化学物质,这些物质相互之间发生着多种化学反应。化学试剂中的能量来源会促进或“迫使”这些物质之间发生反应,就好像阳光能促使大气中生成臭氧,或是化学燃料ATP(三磷酸腺苷)为细胞活动供能一样。
从随机的初始化学物质浓度、反应速率以及“强迫性外力”(它决定了哪些反应能够得到外力增强以及得到多大程度的增强)开始,模拟的化学反应系统将不断演进,直至达到最终的稳定状态,或称“定点”。