附:正式统计报告
1.数据与变量
1.1 数据来源
我们使用的数据主要来自于上述的课程微信群中的红包记录。该群聊总共进行了10次红包领取活动,每次发放的总金额固定为5元,但是每次的红包个数在27-32个之间。由于领取红包的学生为27人,且在单次活动中并非每一个学生都会领取,因而每一次的红包数目相对于学生人数而言都是足够的。为了得到用户经历等信息,我们使用调查表对27名学生进行了调查,采集了微信账号、注册时间和手机类型等信息。在每次活动中,每位参与者的表现作为一个观测;通过这10次活动的记录,我们总共得到了217个有效观测。
1.2 变量
1.2.1 因变量
因变量为在每次活动中每位参与者得到的红包金额。虽然每次活动的总金额都固定为5元,但是由于红包数目有变化,因此在不同的活动中,每位参与者领取到金额的期望会有差异。为了消除这一差异带来的偏误,我们对领到的红包金额做了标准化。标准化的方法如下。
其中yij为第i次活动中参与者j得到的金额,ni为第i次活动中的红包个数revenueij代表标准化金额,是我们最终使用的因变量,其度量单位为人民币分(1分=0.01元)。经过这样的标准化,我们将每次活动中发放的红包个数统一为了30个,也即每次活动中每个红包的金额期望值为1/6元(约为16.667分);这样,我们的217个观测中的因变量具有可比性。
在后一阶段的分析中,为了探求领取金额的极端值与用户经历之间可能存在的关系,我们使用了另外2个因变量:lower-tail和upper-tail,它们都是二分变量。
1.2.2 解释变量
核心解释变量是用户经历experience,也即每个用户从注册微信账号之日起至2016年8月1日所经历的时间,以月作为度量单位,精度为0.5月。
由于微信账号本身不能识别国籍(个人信息中的“所在地区”可以任意填写),而所有学员微信绑定的手机号都是中国大陆的号码,加之绝大多数红包领取活动都在同一间教室进行,因而我们能够考察到的唯一的可以对领取金额造成影响的解释变量是手机类型。因此我们选择手机类型作为控制变量iphone。它也是二分变量,如果使用iPhone或者iPad等苹果产品参与领取红包活动,则变量iphone=1;如果使用其它品牌的移动设备,则变量iphone=0。
1.2.3 变量的描述性统计
以上因变量与解释变量的描述性统计结果参见表1。
1.3 一个说明
需要说明的问题是,由于在每一次红包领取活动中,发放的红包个数都是过量的,因此我们的217个观测中没有包含未领取的红包。从表1中可以看出,217次观测中的标准化领取金额为16.516分。在虚拟假设H0:“revenue的均值=16.667”之下做假设检验,得到,因此不能拒绝虚拟假设H0。我们有理由认为,领取的红包与未领取的红包在金额分布上没有显著的系统性差异,从而我们的观测在这种意义上是无偏的。
2.统计分析结果
2.1 LOWESS结果
为了考察因变量(revenue)随着核心解释变量(experience)大致的变化趋势,我们首先绘制了散点图,并使用局部加权散点拟合方法(Locally Weighted Scatterplot Smoothing, LOWESS)添加了拟合曲线。其结果显示在图1中。
由拟合曲线可以看出,revenue与experience之间的关系可以大致以experience=35为界分为两段:在分界点以左,revenue随着experience递增;在分界点以右,revenue随着experience递减。也即如果用户使用时长小于35月,则用户经历越长,平均而言领取的金额数越高;如果用户时长大于35月,则用户经历越长,平均而言领取的金额数越低。
2.2 回归分析结果
LOWESS拟合的曲线显示revenue与experience之间存在一个先增后减的凹函数关系,为了更为准确地研究这一关系,我们考虑添加平方项experience2,进行回归分析。基本回归的方程如下。
在该模型当中,我们只考察experience及其平方项对于revenue的影响。
为了研究手机类型对revenue可能造成的干扰,我们在第2个回归模型中增加了控制变量iphone,模型如下。
表2的第(1)列和第(2)列分别显示了使用最小二乘方法(OLS)对这两个模型的回归结果。Experience平方项的系数为负且在统计上显著,experience项系数为正且在统计上显著,控制变量iphone的加入没有改变这一结果,且控制变量iphone的系数在统计上不显著。这表明revenue与experience之间可能存在一个二次函数关系。根据平方项与一次项的系数,可以估算出由增转为减的拐点位置在experience=33.91(回归(1))或experience=34.28(回归(2)),这与LOWESS的图形也基本吻合。
为了进一步验证这种二次函数关系,我们使用了分位数回归方法(quantile regression),分别取tau=0.25,0.5,0.75。回归结果显示在表2的第(3)列至第(8)列。这6个分位数回归的结果显示,experience平方项系数为负且显著,experience项系数为正且显著,控制变量iphone的加入不改变它们系数的符号和显著性,且iphone的系数本身不显著。由平方项和一次项估算出的拐点位置依次为experience=36.33, 37.88, 30.90, 31.09, 33.17, 33.71。这与OLS的结果以及LOWESS的结果吻合。
2.3 对极端值的分析结果
以上分析主要针对各个解释变量对于标准化领取金额的影响。下面,我们想考察这些解释变量是否会影响在红包领取活动中得到极端金额的可能性。为此,我们引入了2个因变量:lower-tail和upper-tail,它们都是二分变量。如果标准化领取金额小于5分,则lower-tail取1,否则取0;如果标准化领取金额大于或等于28分,则upper-tail取1,否则取0。由于因变量为二分变量,我们使用了Logistic回归方法;回归结果中各解释变量的系数代表了该变量对机会比率(odds ratio)的自然对数的边际影响率。
表3的第(1)列和第(2)列显示了以lower-tail为因变量的logistic回归结果;可以发现,experience及其平方项的系数在统计上与0没有显著性差异,控制变量iphone的系数也不显著。因此这些解释变量对领到极端低值金额的可能性没有显著性影响。
表3的第(3)列和第(4)列显示了以upper-tail为因变量的logistic回归结果;可以发现,experience平方项的系数为负且显著,experience项的系数为正且显著。也即,在用户经历较短的时候,随着experience的增加,在领取红包活动中得到极端高金额的可能性会增加;但是在一个拐点之后,随着experience增加,在领取红包活动中得到极端高金额的可能性会减低。根据系数可以估算出这个拐点的位置是experience=32.60(回归(3))或experience=32.07(回归(4))。控制变量iphone的加入不改变这一结果,而且是否使用苹果设备对于领到极端高金额的可能性没有显著的影响。