专栏名称: 大数据挖掘DT数据分析
实战数据资源提供。数据实力派社区,手把手带你玩各种数据分析,涵盖数据分析工具使用,数据挖掘算法原理与案例,机器学习,R语言,Python编程,爬虫。如需发布广告请联系: hai299014
目录
相关文章推荐
数据派THU  ·  NeurIPS 2024 | ... ·  昨天  
CDA数据分析师  ·  【干货】数据分析可视化【热力图分析】 ·  2 天前  
大数据文摘  ·  专访"Prompt之神"李继刚 - ... ·  3 天前  
数据派THU  ·  斯坦福&哈佛医学院 - ... ·  5 天前  
51好读  ›  专栏  ›  大数据挖掘DT数据分析

利用pandas+python制作100G亚马逊用户评论数据词云

大数据挖掘DT数据分析  · 公众号  · 大数据  · 2017-04-09 20:55

正文



数据挖掘入门与实战  公众号: datadw



我们手里面有一个差不多100G的亚马逊用户在购买商品后留下的评论数据(数据格式为json)。我们需要统计这100G数据中,出现频率最高的100个词语。然后制作一个词云表现表现出来,所谓的词云,就是类似于这样的一张图片


,显然还是图片让我们对单词出现的热度一目了然。


问题难点

  1. 数据量太大,而我的电脑内存只有32G,无法将数据一次性装入内存。需要我们队数据进行分块处理。在解决问题之前,我们需要对要处理的数据一探究竟。我的数据来源是公开的,由MIT一位教授放在亚马逊用户评论数据,http://jmcauley.ucsd.edu/data/amazon/



    只需要给他发一个邮件,说一下自己的意图,就可以直接下载了。下面我结合着代码,介绍整个项目的流程。


import dask.bag as db  
import ujson as json  #听说用ujson解析比普通json快好几倍哦
import pandas as pd  
import numpy as np
import gzip               #解析gzip等压缩文件
import re

b = db.from_filenames(r'E:\研究生阶段课程作业\python\zhihu_bigdata\complete.json.gz',encoding='utf-8').map(json.loads)
b.take(1)    #检查数据的格式
>>out[1]:'asin': 'B003UYU16G',
'helpful': [0, 0],
'overall': 5.0,
'reviewText': "It is and does exactly what the description said it would be and would do. Couldn't be happier with it.",
'reviewTime': '11 21, 2012',
'reviewerID': 'A00000262KYZUE4J55XGL',
'reviewerName': 'Steven N Elich',
'summary': "Does what it's supposed to do",
'unixReviewTime': 1353456000}



在这段代码中,我们首先读取complete.json.gz里面的数据,这里我用到了dask里面的bag类型,dask会根据你的内存情况来适当读取不超过内存大小的数据


因为我们只对里面的 "reviewText"字段感兴趣,我们对其他的字段直接忽略。在提取" "reviewText"数据之前,我们看一下需要处理多少行这样的数据。


print(sum([1 for _ in gzip.open(r'E:\研究生阶段课程作业\python\zhihu_bigdata\complete.json.gz')]))   #计算用户的评论数目
out[2]:143674325     #差不多1.5亿行数据,在我电脑上跑了差不多三分钟




没错,只有一行数据,不用把数据全部装入内存,我们就可以计算这100G数据,究竟有多少个类似于out[1]这样的数据段。你问我为什么喜欢python,这就是理由,因为他强大,简洁,优雅,代码可读性好。


我们需要处理的数据差不多有100G,远超我们的内存极限。
采用的步骤如下:
step 1:对每一个用户数据,转化成字典结构。
step 2: 提取里面的 reviewText
step 3: 使用分词,把句子转化成单词
step 4:对每个单词进行hash,对于相同的hash值,写进txt文件
step 5: 对于同一个单词,肯定在一个txt文件中,分别统计单词的出现频率
step 6: 制作词云




在这片文章的剩下内容,我将针对这六个步骤进行详细讲解:


tempDir = 'E:/研究生阶段课程作业/python/好玩的数据分析/制作亚马逊200G用户评论词云' #把评论数据分散到这个文件下下面的100个txt文件
pattern = re.compile(r'\w+')   #编译正则表达式,把短句转化成list
def hashFile():
 temp_path_list = []
 for i in range(1,101):
     temp_path_list.append(open(tempDir+'/'+str(i)+'.txt',mode='w'))
 for each in (gzip.open(r'E:\研究生阶段课程作业\python\zhihu_bigdata\complete.json.gz')):
     sentence = eval(each)    # turn string to dict
     words = sentence['reviewText']   #提取 reviewText
     words_list = pattern.findall(words)  # example:words:"I love china" to words_list:["I","love","china"]
     #print(words_list)
     for word in words_list:
         if not word.lower() in stopwords and len(word) >= 2: #忽略一些太简单的单词,例如“a”,"an",把你不想要的的单词全部放在stopwords中。最好是set格式的stopwords。
             word = word.lower()        #全部为小写单词
             print(hash(word)%100)    #对单词进行hash,相同的单词一定会hash到同一个文件中
             temp_path_list[hash(word)%100].write(word+'\n')   #写入文件
 for f in temp_path_list:
     f.close()
hashFile()


以上的一段代码,首先是遍历100G的数据,提取每一行中的我们感兴趣的部分。然后使用正则表达式,把字符串转化成单词列表,过滤到我们不感兴趣的单词。对剩下的单词进行hash,这样我们可以把相同的单词写到同一个文件中,因为我们的目标是找出出现频率前1000的单词,那么我们只要对这1000个文件,各自找出出现频率在1000以内的单词,在进行排序,即可得出最终的结果。


经过上面的步骤,我们已经把可能相同的单词放在了一个文件中,共计100个文件
下面分别读取每个文件到一个列表中
计算每个列表出现频率最高的1000个单词
最后在找出100个文件中出现频率最高的1000个单词
import os
from collections import Counter
results = Counter() # 初始化
for root, dirs, files in os.walk(r'E:\研究生阶段课程作业\python\好玩的数据分析\制作亚马逊200G用户评论词云'):
 for file in files:
     with open(os.path.join(root, file)) as f:
         words_list = f.readlines()
         words_list = list(map(lambda x: x.strip('\n'),words_list))
         word_common_1000 = Counter(words_list).most_common(1000)
         results.update(word_common_1000)



以上的一段代码,把100个txt里面的单词,分别遍历,找出每个出现频率为1000的单词,全部放在results中



import heapq
words_fren_list = list(results.keys())
words_fren_list_100 = heapq.nlargest(100,words_fren_list,key = lambda x:x[1])


哈哈大功告成,特别提醒一下,这里我是用了一个小的trick,找出出现频率最高的100个单词的时候,我并没有对全部数据进行排序,而是使用了heaapq中的nlarges函数,可以提升不小的效率。

最后根据这些词出现的频率,画出词云。


from wordcloud import WordCloud
wordcloud = WordCloud(max_font_size=40, relative_scaling=.5).fit_words(words_fren_list_100)
import matplotlib.pyplot as plt
plt.imshow(wordcloud)
plt.axis("off")
plt.imshow()


最后的结果如下图所示:


数据挖掘入门与实战

搜索添加微信公众号:datadw


教你机器学习,教你数据挖掘


长按图片,识别二维码,点关注



  公众号: weic2c   
据分析入门与实战

长按图片,识别二维码,点关注