专栏名称: 小白学视觉
本公众号主要介绍机器视觉基础知识和新闻,以及在学习机器视觉时遇到的各种纠结和坑的心路历程。
目录
51好读  ›  专栏  ›  小白学视觉

基于深度学习的车牌检测识别(Pytorch)(ResNet +Transformer)

小白学视觉  · 公众号  ·  · 2024-12-27 10:05

正文

点击上方 小白学视觉 ”,选择加" 星标 "或“ 置顶

重磅干货,第一时间送达

车牌识别

概述

基于深度学习的车牌识别,其中,车辆检测网络直接使用YOLO侦测。而后,才是使用网络侦测车牌与识别车牌号。

车牌的侦测网络,采用的是resnet18,网络输出检测边框的仿射变换矩阵,可检测任意形状的四边形。

车牌号序列模型,采用Resnet18+transformer模型,直接输出车牌号序列。

数据集上,车牌检测使用CCPD 2019数据集,在训练检测模型的时候,会使用程序生成虚假的车牌,覆盖于数据集图片上,来加强检测的能力。

车牌号的序列识别,直接使用程序生成的车牌图片训练,并佐以适当的图像增强手段。模型的训练直接采用端到端的训练方式,输入图片,直接输出车牌号序列,损失采用CTCLoss。


一、网络模型

1、车牌的侦测网络模型:

网络代码定义如下:


该网络,相当于直接对图片划分cell,即在16X16的格子中,侦测车牌,输出的为该车牌边框的反射变换矩阵。


2、车牌号的序列识别网络:

车牌号序列识别的主干网络:采用的是ResNet18+transformer,其中有ResNet18完成对图片的编码工作,再由transformer解码为对应的字符。

网络代码定义如下:


其中的Block类的代码如下:


位置编码的代码如下:


Block类使用的自注意力代码如下:


二、数据加载

1、车牌号的数据加载

同过程序生成一组车牌号:


再通过数据增强,

主要包括:



三、训练

分别训练即可

其中,侦测网络的损失计算,如下:


侦测网络输出的反射变换矩阵,但对车牌位置的标签给的是四个角点的位置,所以需要响应转换后,做损失。其中,该cell是否有目标,使用CrossEntropyLoss,而对车牌位置损失,采用的则是L1Loss。


四、推理

1、侦测网络的推理

按照一般侦测网络,推理即可。只是,多了一步将反射变换矩阵转换为边框位置的计算。

另外,在YOLO侦测到得测量图片传入该级进行车牌检测的时候,会做一步操作。代码见下,将车辆检测框的图片扣出,然后resize到长宽均为16的整数倍。


2、序列检测网络的推理

对网络输出的序列,进行去重操作即可,如间隔标识符为“*”时:


完整代码

https://github.com/HibikiJie/LicensePlate

原文地址

https://blog.csdn.net/weixin_48866452/article/details/120319588

下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目






请到「今天看啥」查看全文