专栏名称: 大数据挖掘DT数据分析
实战数据资源提供。数据实力派社区,手把手带你玩各种数据分析,涵盖数据分析工具使用,数据挖掘算法原理与案例,机器学习,R语言,Python编程,爬虫。如需发布广告请联系: hai299014
目录
相关文章推荐
天池大数据科研平台  ·  11B模型拿下开源视频生成新SOTA!仅用2 ... ·  23 小时前  
CDA数据分析师  ·  CDA数据人才能力模型与认证体系简介​ ·  2 天前  
数据派THU  ·  通知 | ... ·  3 天前  
软件定义世界(SDX)  ·  Manus火到国外?网友实测惊呆!00后博士 ... ·  4 天前  
大数据分析和人工智能  ·  45个DeepSeek操作技巧,效率翻倍 ·  5 天前  
51好读  ›  专栏  ›  大数据挖掘DT数据分析

使用Python进行描述性统计

大数据挖掘DT数据分析  · 公众号  · 大数据  · 2017-03-12 23:04

正文



数据挖掘入门与实战  公众号: datadw



目录

1 描述性统计是什么?
2 使用NumPy和SciPy进行数值分析
2.1 基本概念
2.2 中心位置(均值、中位数、众数)
2.3 发散程度(极差,方差、标准差、变异系数)
2.4 偏差程度(z-分数)
2.5 相关程度(协方差,相关系数)
2.6 回顾
3 使用Matplotlib进行图分析
3.1 基本概念
3.2 频数分析
3.2.1 定性分析(柱状图、饼形图)
3.2.2 定量分析(直方图、累积曲线)
3.3 关系分析(散点图)
3.4 探索分析(箱形图)
3.5 回顾
4 总结




1 描述性统计是什么?

描述性统计是借助图表或者总结性的数值来描述数据的统计手段。数据挖掘工作的数据分析阶段, 我们可借助描述性统计来描绘或总结数据的基本情况 ,一来可以梳理自己的思维,二来可以更好地向他人展示数据分析结果。数值分析的过程中,我们往往要计算出数据的统计特征,用来做科学计算的NumPy和SciPy工具可以满足我们的需求。Matpotlob工具可用来绘制图,满足图分析的需求。


2 使用NumPy和SciPy进行数值分析

2.1 基本概念

与Python中原生的List类型不同, Numpy中用ndarray类型来描述一组数据


 1 from numpy import array 
2
from numpy.random import normal, randint
3
#使用List来创造一组数据 4 data = [1, 2, 3]
5
#使用ndarray来创造一组数据
6
data = array([1, 2, 3])
7
#创造一组服从正态分布的定量数据
8
data = normal(0, 10, size=10)
9
#创造一组服从均匀分布的定性数据
10
data = randint(0, 10, size=10)


2.2 中心位置(均值、中位数、众数)

数据的中心位置是我们最容易想到的数据特征。借由中心位置,我们可以知道数据的一个平均情况,如果要对新数据进行预测,那么平均情况是非常直观地选择。数据的中心位置可分为均值(Mean),中位数(Median),众数(Mode)。其中均值和中位数用于定量的数据,众数用于定性的数据。

对于定量数据(Data)来说,均值是总和除以总量(N),中位数是数值大小位于中间(奇偶总量处理不同)的值:

均值相对中位数来说,包含的信息量更大,但是容易受异常的影响。使用NumPy计算均值与中位数:

1 from numpy import mean, median
2
3 #计算均值4 mean(data)
5
#计算中位数
6 median(data)


对于定性数据来说,众数是出现次数最多的值,使用SciPy计算众数:

1 from scipy.stats import mode
2
3 #计算众数
4
mode(data)

2.3 发散程度(极差、方差、标准差、变异系数)

对数据的中心位置有所了解以后,一般我们会想要知道数据以中心位置为标准有多发散。如果以中心位置来预测新数据,那么发散程度决定了预测的准确性。数据的发散程度可用极差(PTP)、方差(Variance)、标准差(STD)、变异系数(CV)来衡量,它们的计算方法如下:

极差是只考虑了最大值和最小值的发散程度指标,相对来说,方差包含了更多的信息,标准差基于方差但是与原始数据同量级,变异系数基于标准差但是进行了无量纲处理。使用NumPy计算极差、方差、标准差和变异系数:

 1 from numpy import mean, ptp, var, std 
2
3 #极差
4
ptp(data)
5
#方差
6
var(data)
7
#标准差
8
std(data)
9
#变异系数
10
mean(data) / std(data)

2.4 偏差程度(z-分数)

之前提到均值容易受异常值影响,那么如何衡量偏差,偏差到多少算异常是两个必须要解决的问题。定义z-分数(Z-Score)为测量值距均值相差的标准差数目:

当标准差不为0且不为较接近于0的数时,z-分数是有意义的,使用NumPy计算z-分数:

1 from numpy import mean, std
2
3 #计算第一个值的z-分数

4 (data[0]-mean(data)) / std(data)

通常来说,z-分数的绝对值大于3将视为异常。

2.5 相关程度

有两组数据时,我们关心这两组数据是否相关,相关程度有多少。用协方差(COV)和相关系数(CORRCOEF)来衡量相关程度:

协方差的绝对值越大表示相关程度越大,协方差为正值表示正相关,负值为负相关,0为不相关。相关系数是基于协方差但进行了无量纲处理。使用NumPy计算协方差和相关系数:

 1 from numpy import array, cov, corrcoef 
2
3 data = array([data1, data2])
4
5 #计算两组数的协方差
6
#参数bias=1表示结果需要除以N,否则只计算了分子部分
7
#返回结果为矩阵,第i行第j列的数据表示第i组数与第j组数的协方差。对角线为方差
8
cov(data, bias=1)
9
10 #计算两组数的相关系数
11
#返回结果为矩阵,第i行第j列的数据表示第i组数与第j组数的相关系数。对角线为
1
12 corrcoef(data)

2.6 回顾

方法 说明
numpy array 创造一组数
numpy.random normal 创造一组服从正态分布的定量数
numpy.random randint 创造一组服从均匀分布的定性数
numpy mean 计算均值
numpy median 计算中位数
scipy.stats mode 计算众数
numpy ptp 计算极差
numpy var 计算方差
numpy std 计算标准差
numpy cov 计算协方差
numpy corrcoef 计算相关系数




3 使用Matplotlib进行图分析

3.1 基本概念

使用图分析可以更加直观地展示数据的分布(频数分析)和关系(关系分析)。柱状图和饼形图是对定性数据进行频数分析的常用工具,使用前需将每一类的频数计算出来。直方图和累积曲线是对定量数据进行频数分析的常用工具,直方图对应密度函数而累积曲线对应分布函数。散点图可用来对两组数据的关系进行描述。在没有分析目标时,需要对数据进行探索性的分析,箱形图将帮助我们完成这一任务。

在此,我们使用一组容量为10000的男学生身高,体重,成绩数据来讲解如何使用Matplotlib绘制以上图形,创建数据的代码如下:

View Code

3.2 频数分析

3.2.1 定性分析(柱状图、饼形图)

柱状图是以柱的高度来指代某种类型的频数,使用Matplotlib对成绩这一定性变量绘制柱状图的代码如下:

 1 from matplotlib import pyplot 

2 3 # 绘制柱状图

4 def drawBar(grades):

5 xticks = [ ' A ' , ' B ' , ' C ' , ' D ' , ' E ' ] 6 gradeGroup = {}

7 # 对每一类成绩进行频数统计

8 for grade in grades:

9 gradeGroup[grade] = gradeGroup.get(grade, 0) + 1

10 #创建 柱状图

11 # 第一个参数为柱的横坐标

12 # 第二个参数为柱的高度

13 # 参数align为柱的对齐方式,以第一个参数为参考标准

14 pyplot.bar(range(5), [gradeGroup.get(xtick, 0) for xtick in xticks], align= ' center ' )

15 16 # 设置柱的文字说明

17 # 第一个参数为文字说明的横坐标

18 # 第二个参数为文字说明的内容

19 pyplot.xticks(range(5 ), xticks)

20 21 # 设置横坐标的文字说明

22 pyplot.xlabel( ' Grade ' )

23 # 设置纵坐标的文字说明

24 pyplot.ylabel( ' Frequency ' )

25 # 设置标题

26 pyplot.title( ' Grades Of Male Students ' )

27 # 绘图

28 pyplot.show()

29

30 drawBar(grades)


绘制出来的柱状图的效果如下:

而饼形图是以扇形的面积来指代某种类型的频率,使用Matplotlib对成绩这一定性变量绘制饼形图的代码如下:







请到「今天看啥」查看全文