作者 for-in
原文链接:https://my.oschina.net/liuyuantao/blog/749329
总结了一下常见集中排序的算法
归并排序
归并排序也称合并排序,是分治法的典型应用。分治思想是将每个问题分解成个个小问题,将每个小问题解决,然后合并。
具体的归并排序就是,将一组无序数按n/2递归分解成只有一个元素的子项,一个元素就是已经排好序的了。然后将这些有序的子元素进行合并。
合并的过程就是 对 两个已经排好序的子序列,先选取两个子序列中最小的元素进行比较,选取两个元素中最小的那个子序列并将其从子序列中
去掉添加到最终的结果集中,直到两个子序列归并完成。
代码如下:
#!/usr/bin/python
import sys
def merge(nums, first, middle, last):
''''' merge '''
# 切片边界,左闭右开并且是了0为开始
lnums = nums[first:middle+1]
rnums = nums[middle+1:last+1]
lnums.append(sys.maxint)
rnums.append(sys.maxint)
l = 0
r = 0
for i in range(first, last+1):
if lnums[l]
稳定,时间复杂度 O(nlog n)
插入排序
代码如下:
#!/usr/bin/python
import sys
def insert_sort(a):
''''' 插入排序
有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,
但要求插入后此数据序列仍然有序。刚开始 一个元素显然有序,然后插入一
个元素到适当位置,然后再插入第三个元素,依次类推
'''
a_len = len(a)
if a_len = 0 and a[j] > key:
a[j+1] = a[j]
j-=1
a[j+1] = key
return a
if __name__ == '__main__':
nums = [10,8,4,-1,2,6,7,3]
print 'nums is:', nums
insert_sort(nums)
print 'insert sort:', nums
稳定,时间复杂度 O(n^2)
交换两个元素的值python中你可以这么写:a, b = b, a,其实这是因为赋值符号的左右两边都是元组
(这里需要强调的是,在python中,元组其实是由逗号“,”来界定的,而不是括号)。
选择排序
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到
排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所
有元素均排序完毕。
import sys
def select_sort(a):
''''' 选择排序
每一趟从待排序的数据元素中选出最小(或最大)的一个元素,
顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
选择排序是不稳定的排序方法。
'''
a_len=len(a)
for i in range(a_len):#在0-n-1上依次选择相应大小的元素
min_index = i#记录最小元素的下标
for j in range(i+1, a_len):#查找最小值
if(a[j]
不稳定,时间复杂度 O(n^2)
希尔排序,也称递减增量排序算法,希尔排序是非稳定排序算法。该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。
先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行排序;
然后,取第二个增量d2
import sys
def shell_sort(a):
''''' shell排序
'''
a_len=len(a)
gap=a_len/2#增量
while gap>0:
for i in range(a_len):#对同一个组进行选择排序
m=i
j=i+1
while j
不稳定,时间复杂度 平均时间 O(nlogn) 最差时间O(n^s)1
“堆”的定义:在起始索引为 0 的“堆”中:
节点 i 的右子节点在位置 2 * i + 24) 节点 i 的父节点在位置 floor( (i - 1) / 2 ) : 注 floor 表示“取整”操作
堆的特性:
每个节点的键值一定总是大于(或小于)它的父节点
“最大堆”:
“堆”的根节点保存的是键值最大的节点。即“堆”中每个节点的键值都总是大于它的子节点。
上移,下移 :
当某节点的键值大于它的父节点时,这时我们就要进行“上移”操作,即我们把该节点移动到它的父节点的位置,而让它的父节点到它的位置上,然后我们继续判断该节点,直到该节点不再大于它的父节点为止才停止“上移”。
现在我们再来了解一下“下移”操作。当我们把某节点的键值改小了之后,我们就要对其进行“下移”操作。
方法:
我们首先建立一个最大堆(时间复杂度O(n)),然后每次我们只需要把根节点与最后一个位置的节点交换,然后把最后一个位置排除之外,然后把交换后根节点的堆进行调整(时间复杂度 O(lgn) ),即对根节点进行“下移”操作即可。 堆排序的总的时间复杂度为O(nlgn).
代码如下:
#!/usr/bin env python
# 数组编号从 0开始
def left(i):
return 2*i +1
def right(i):
return 2*i+2
#保持最大堆性质 使以i为根的子树成为最大堆
def max_heapify(A, i, heap_size):
if heap_size 1:
node = heap_size/2 -1
while node >= 0:
max_heapify(A, node, heap_size)
node -=1
# 堆排序 下标从0开始
def heap_sort(A):
bulid_max_heap(A)
heap_size = len(A)
i = heap_size - 1
while i > 0 :
A[0],A[i] = A[i], A[0] # 堆中的最大值存入数组适当的位置,并且进行交换
heap_size -=1 # heap 大小 递减 1
i -= 1 # 存放堆中最大值的下标递减 1
max_heapify(A, 0, heap_size)
if __name__ == '__main__' :
A = [10, -3, 5, 7, 1, 3, 7]
print 'Before sort:',A
heap_sort(A)
print 'After sort:',A
不稳定,时间复杂度 O(nlog n)
快速排序算法和合并排序算法一样,也是基于分治模式。对子数组A[p…r]快速排序的分治过程的三个步骤为:
分解:把数组A[p…r]分为A[p…q-1]与A[q+1…r]两部分,其中A[p…q-1]中的每个元素都小于等于A[q]而A[q+1…r]中的每个元素都大于等于A[q];
解决:通过递归调用快速排序,对子数组A[p…q-1]和A[q+1…r]进行排序;
合并:因为两个子数组是就地排序的,所以不需要额外的操作。
对于划分partition 每一轮迭代的开始,x=A[r], 对于任何数组下标k,有:
1) 如果p≤k≤i,则A[k]≤x。
2) 如果i+1≤k≤j-1,则A[k]>x。
3) 如果k=r,则A[k]=x。
代码如下:
#!/usr/bin/env python
# 快速排序
'''''
划分 使满足 以A[r]为基准对数组进行一个划分,比A[r]小的放在左边,
比A[r]大的放在右边
快速排序的分治partition过程有两种方法,
一种是上面所述的两个指针索引一前一后逐步向后扫描的方法,
另一种方法是两个指针从首位向中间扫描的方法。
'''
#p,r 是数组A的下标
def partition1(A, p ,r):
'''''
方法一,两个指针索引一前一后逐步向后扫描的方法
'''
x = A[r]
i = p-1
j = p
while j
不稳定,时间复杂度 最理想 O(nlogn)最差时间O(n^2)
说下python中的序列:
列表、元组和字符串都是序列,但是序列是什么,它们为什么如此特别呢?序列的两个主要特点是索引操作符和切片操作符。索引操作符让我们可以从序列中抓取一个特定项目。切片操作符让我们能够获取序列的一个切片,即一部分序列,如:a = [‘aa’,’bb’,’cc’], print a[0] 为索引操作,print a[0:2]为切片操作。
推荐阅读
2017年大数据和数据科学的六大发展趋势
你每天要花多少时间在手机上?
初级数据科学家求职时的 3 大必备能力
不可错过的优质深度学习课程
职场 | 数据库面试常问的一些基本概念
听说你最擅长“拖”,你“拖”得过Excel吗?
数据科学优质课程推荐#2:统计入门课程篇
歌手外科和猴姑,大数据告诉你白百何出轨后谁最惨
想学习数据科学?我们整理了一份优质编程入门课程清单
数据科学家在美国仍然是最热门工作的3大原因
一个优秀数据分析师的准则
Python 实现一个火车票查询的工具
干货 | 携程实时用户行为系统实践
数据分析证明最靠谱的电影评分网站不是 IMDB, 也不是烂番茄,而是...
那些年,写 Python 犯过的错误
我用6.5万条公开数据分析了一下人民眼中的人民的名义
如何获得你的第一份数据科学领域的工作?
北京空气质量数据可视化
几个提高工作效率的Python内置小工具
Python 自然语言处理《釜山行》人物关系