激光器:“虽小尤大”
一台快速工作中的激光切割、焊接设备,一台利用材料熔融堆积而成的3D打印设备,一台能够精准刻画出各种图案的激光打标设备……装备制造的无所不能,背后的英雄自然是“虽小尤大”的激光器。这从今年年初慕尼黑上海光博会的观众兴趣领域调研中,激光器名列榜首就可见一斑。
气体激光器、固体激光器、半导体激光器等在不同功率的作用下,效能各不相同。随着汽车、电子、以及工业制造领域的不断发展,新技术、新材料、新应用层出不穷。譬如,精密级激光切割工艺在加工智能手机的Home键、玻璃盖板、导电玻璃、音量孔、tft液晶屏、不锈钢外框、柔性印刷电路板、背盖壳、以及其它薄膜材料和脆性材料等结构要素中不可或缺的。此外,激光打孔、涂胶、贴膜、打标、去毛刺等技术也正不断应用于这些光鲜亮丽的智能手机制造中。
未来,激光器研发将朝向全固态、高功率、高光束质量、商可靠性和低成本方向发展,半导体激光器、半导体泵浦固体激光器和光纤激光器等将成为激光器的发展主流。
激光与消费电子:
在“中国制造2025”不断深化的背景下,如今,传统的制造业正面临深度转型和升级。其中的一个重要战略便是转向附加价值和技术壁垒更高的高端精密加工。那么,如何才能实现高端精密加工?如果你用过“最快的刀”、“最准的尺”、“最亮的光”,就一定能猜到,是的,激光。
市场研究公司BBC Research发布的报告显示,预计到2020年,全球工业激光器的市场规模将达到63亿美元,其中,消费电子领域将成为工业激光器最大的终端应用产业,其市场份额有望达到20亿美元。随着科技的不断进步,全球创新型电子消费产品日新月异,它们不仅外观炫目多彩,并内置了各种复杂精密的集成技术。因而,电子行业的瞬息万变也给激光制造业带来了巨大的机遇和挑战。
基本上,激光技术采用非接触性加工方式,不会产生机械应力,特别符合电子行业的加工要求。另外,凭借其高效率、高精度、热影响区小、无污染等优势,激光加工技术被广泛应用了电子工业。
在电子消费品行业中,激光切割能够以一流的切割精度和速度对金属或非金属零部件等小型工件进行精密切割或微孔加工。激光焊接则以热变形小、作用区域和位置精确可控、焊接品质高、易于实现自动化、能实现异种材料焊接等优势脱颖而出。而激光打标凭借其环保、耐磨性强、加工精度高、低成本、性能稳定、使用范围广、便于追踪管控等特点适用于对各种薄型金属/非金属材料打标,并且能在门类广泛的电子元器件上烙下永久性的“标记”。
智能时代:激光与手机交融
移动互联网时代早已颠覆了人们的生活、工作和思维模式。随着消费电子行业的迅猛发展,智能手机俨然成为了人们生活中不可缺失的元素之一。据Gartner的分析报告称,2016年,全球智能手机的出货量约为14.5亿部,同比增长0.6%;2017年预计的出货量将在15亿部左右。
手机无疑是电子消费品中当仁不让的宠儿。随着手机市场竞争愈发激烈,手机制造业对产品自然也提出了更高的要求。据悉,约70%的手机加工制造环节都应用到激光技术(超过20种不同的工艺)及相关的制造设备。无论你肉眼能看到的,抑或不能看到的,激光的身影都以不同形式“穿插”其中。
尤其是随着近年来高功率、深紫外和超快激光加工等技术的发展,持续推动了智能手机制造技术的飞跃。究其缘由,想必与激光工艺特性及手机精密制造需求息息相关。凭借其功率密度高、方向性好、清洁、高效、环保等众多优势,激光加工在手机制造中取代传统技术的趋势也日益明显。
例如,精密激光切割在加工智能手机的众多结构元素,如Home键、蓝宝石屏、tft液晶屏、AMOLED屏、玻璃盖板、导电玻璃、音量孔、不锈钢外壳、PCB电路板、柔性电路板、背盖壳、以及其它薄膜材料和脆性材料等都是大有用武之地的技术。另外,如今电子元器件集成化要求越来越高、设计愈发倾向微小化,许多精细的深孔,如采用传统加工方式便很难完成,激光钻孔由此成为重要的工艺手段。激光聚焦光斑能在很小的区域内集中很高的能量,尤其适用于加工微细深孔,最小孔径只有几微米,孔深和孔径比可大于50微米。同时,
一部手机上随处可见激光打标的影子,如:Logo、手机按键、手机外壳、电池、PCB、手机饰品以及手机内部的零部件等等。
(图源:大族激光)
亚洲是全球消费品行业的“生产热点地区”,以其消费电子业占据领先地位。预计到2019年,亚洲地区的智能手机用户规模将达到26.6亿,这一市场正呈现“爆发式”的增长,并且带来大量的激光应用潜力。智能手机制造除了应用传统的激光切割、激光焊接和激光打标技术外,更多新型的激光工艺正大显身手。例如:基于超短脉冲激光器的玻璃切割工艺。这类激光器主要被用于切割使用硬化玻璃和蓝宝石玻璃等材料制成的电视屏、电脑屏、平板电脑和显示屏。另外一个例子是用于焊接移动电话摄像模块的低功率二极管激光器。
行业热点:激光精密加工
精密加工需求正推动以飞秒和皮秒激光器为代表的超快激光器在工业市场上获得越来越广泛的应用。据悉,到2020年,超快脉冲激光器的市场规模有望超过15亿美元。兆瓦峰值功率、皮秒和飞秒脉冲宽度的超快激光器在3C产业(包括计算机、通信和消费电子产品如智能电话、平板电脑器件领域)等加工领域将获得迅猛发展。
例如,手机、微处理器、显示器、内存芯片等精密复杂的消费电子产品及组件都是由大量不同的异形、微型材料所组成,尤其需要高精密的加工技术支撑。在此情况下,超快激光技术便以其在精细加工、光束控制和光束传输技术等方面的显著优势获得青睐。这一技术也成为未来成功制造更为复杂的消费电子设备的关键所在。
因而,超快激光提供了前所未有的极端制造与精密制造潜力,旨在攻克常规工艺难以实现的高、精、尖、硬、难等加工瓶颈。据业内人士表示,未来三到五年,消费电子市场对智能设备将提出更高的要求,目前比较流行的如VR、AR等新技术将会推动超快激光器市场的进一步发展。
创新产品“激”起千层浪
随着激光技术在消费电子领域的应用愈发频繁,国内外激光行业的领头羊们也积极部署着这一颇具前景的产业,顺势推出了各种创新产品和设备。
近年来,金属外壳的电脑笔记本的市场占有率越来越高。然而,这类电脑笔记本外壳上有许多小径度的微孔很难使用传统的CNC加工手段处理。鉴于此,华工激光研发了一款旨在对这些金属微孔进行加工的金属激光钻孔机,该设备适用于加工直径小于1mm以下的孔。激光器采用了进口高功率脉冲光纤激光器。其特点是加工效率高、加工孔圆度高,可达到90%圆度,孔的一致性好。
大族激光则开发了一款针对手机阳极铝切割的高功率高重复频率紫外金属切割设备,设备采用高功率25W紫外固体激光器及自主研发冷却系统、EMCC卡控制系统、CCD视觉定位系统。
此外还配有自主研发的HL6.0切割软件系统,具有复杂曲线的切割图形编辑和文字处理能力,柔性度大,加工轮廓精度达0.01mm,加工的位置精度可达0.02mm。
又如,乐普科推出的LPKF
ProtoLaser
S4激光直写电路设备是电子实验中非常重要的研发设备。它能够快速准确地制作精密节距并激光消融大面积金属,以形成电路图形,整个过程一束激光即可完成。该激光系统相对于机械系统精度更高,因此是数字电路,模拟电路,高频和微波电路的理想制作工具,适用于在覆铜的FR4板材,覆铝的PET柔性材料,Duroid以及PTFE上制作精细几何图形。
激光作为一种先进的加工工具,已经越来越广泛地在工业生产中发挥着举足轻重的作用。随着激光技术自身的不断发展完善,其凭借着在加工质量、加工复杂度、加工效率及清洁环保等优势,不但在不锈钢、铜、合金等各类金属材料加工中获得青睐,而且也正在玻璃、陶瓷、蓝宝石、半导体硅晶圆、PCB板等各种非金属材料加工中凸显出独特优势。
薄脆性材料的加工挑战
在非金属加工领域,薄脆性材料的激光加工备受关注。随着智能手机、LED照明、平板电脑、以及可穿戴设备等消费电子产品的不断发展迭代,玻璃、蓝宝石和陶瓷等材料,凭借着自身具备的独特优质属性而获得了广泛应用,比如坚硬的钢化玻璃用作于智能手机的显示屏;坚硬且化学性质稳定的陶瓷用于制作电子零部件衬底和绝缘材料;坚硬耐划的蓝宝石用于LED衬底、手机摄像头保护玻璃、智能手机显示屏、智能手表的盖板玻璃等。
在这些应用中使用的玻璃、蓝宝石或陶瓷等材料,厚度通常较薄,硬度越来越高,非常易碎。而在加工要求上,上述应用通常需要在这些薄脆易碎的材料上实施非常精密的切割、钻孔甚至开槽等加工过程,这使得传统的铣、
钻、 磨等机械加工工艺面临着极大的挑战,因为材料极薄极脆,加工过程中因接触而施加到材料上的任何应力,都可能导致材料碎裂,最终报废。
然而,传统机械加工方式所面临的挑战,却为非接触性的激光加工带来了更多机会。
超快激光应对加工挑战
玻璃、陶瓷、蓝宝石等薄脆性非金属材料的精密加工,通常使用超快激光。超快激光脉冲持续时间极短,在纳秒、皮秒甚至是飞秒级别,将适度的激光能量作用在材料表面,通过打断材料的化学键而实现材料去除目的,在这个过程中,激光能量还来不及向加工范围周围传递,加工过程便已结束,因此产生的热量几乎可以忽略不计,材料不会产生热损伤。
随着这些脆性材料在LED、智能手机、可穿戴设备等产品中的应用越来越多,致力于这类脆性材料加工的激光器、激光系统及相关科研机构也不断增多,他们的努力也促进了激光技术在脆性材料加工领域不断突破。
(一)汉诺威中心的薄片玻璃钻孔方案
2016年12月初,德国汉诺威激光中心(LZH)和德国巴伐利亚激光中心(BLZ)联合举办了一场主题为“玻璃材料的激光加工”的研讨会,主要探讨激光玻璃加工领域的最新发展与趋势。
当前,激光玻璃加工领域的发展快速,一些创新的加工过程和系统,正在使薄片、平板和管状玻璃产品的加工不断进步。
研讨会上,汉诺威激光中心由Philipp
von
Witzendorff领导的一个研究团队介绍了一种新颖的薄片玻璃钻孔方案,其将单个脉冲与不同的脉冲持续时间相结合,成功避免了钻孔过程中在玻璃边缘出现碎片,加工出的表面非常光滑,能力成功化学强化薄片玻璃的钻孔,如用于手机屏中的强化玻璃。
汉诺威激光中心新开发的玻璃钻孔工艺,比水射流方式更具成本效益,并且还能加工厚度4mm的玻璃。汉诺威激光中心在玻璃加工方面的创新,为消费电子等产品提供了有价值的推动力。
(二)堪称改变行业规则的皮秒混合光纤激光器IceFyre?
在玻璃/蓝宝石加工方面,万机仪器(MKS
Instruments)旗下的光谱物理业务部门(Spectra-Physics)在这方面实力不俗。早在2015年12月,光谱物理就针对化学强化玻璃、非强化玻璃和蓝宝石的快速高质量切割应用,推出了ClearShape飞秒激光器,其能够达到1m/s的切割速度,并且切割边缘无毛边碎屑,边缘粗糙度Ra
<0.1µm。
今年2月Spectra-Physics首次亮相的紧凑型高功率工业皮秒混合光纤激光器IceFyre,堪称是一款改变游戏规则的产品——集高功率、超短脉冲、前所未有的通用性、重复频率可调、可编程灵活调节脉宽、脉冲可按需触发等诸多功能及成本优势于一身。IceFyre在1064nm波长处提供>
50W的平均功率和高达>
200μJ的脉冲能量,脉冲重复频率可调节范围从单发脉冲到8MHz,是精密加工蓝宝石、玻璃、陶瓷、塑料及其他材料的理想光源。
IceFyre在性能、成本、尺寸和可靠性方面的表现,是否如其所愿能够改变工业微加工激光器市场的游戏规则?我们拭目以待。
国内厂商德龙激光,凭借着其自主研发的激光应力诱导切割技术,在非金属精密加工方面也有着不错的表现,几年前其LED芯片划片机曾在国内市场占据大量份额。最近几年,智能手机等消费电子产品的发展,驱动蓝宝石和强化玻璃加工市场走俏,德龙激光的业务领域也随之拓展。
德龙激光总经理赵裕兴博士详细介绍了激光应力诱导切割技术。它将短脉冲激光光束透过材料表面聚焦在材料中间,短脉冲激光极高的瞬时能量,在材料中间形成改质层,从而使被切产品达到断裂效果。这是一种全新的激光切割工艺,具有速度快、不产生粉尘、无基材耗损、所需切割道小、完全干制程等优势。
德龙激光自主研发的皮秒激光应力诱导加工设备,在蓝宝石和玻璃等材料的切割方面,收获了成功,相比于传统的机械切割,在切割效率、切割成本上、材料损耗、产品产出和产品性能方面都有稳步提升。
M-Cut是亚智科技开发出的一种改性切割工艺,其以类似穿孔的方式修改材料基板。M-Cut工艺的光源中具有特别调整的光学系统,形成改良的光束源,能够纵向聚焦形成线性的切割痕迹。这种切割工艺产生的切割界面的粗糙度低于0.5μm,可免去对切割边缘的昂贵研磨抛光工作。
M-Cut适用于切割各种强化玻璃及蓝宝石等脆性材料,切割0.5mm厚的玻璃时,切割速度可达1m/s;不会产生崩边、破裂,切割边缘粗糙度值低于0.5µm,不需要抛光。此外还能提高切割后玻璃的抗裂度。M-Cut工艺可以切割不同几何形状的工件,甚至能以90°角切割转角,是一把灵活的激光刀。
罗芬针对蓝宝石和陶瓷等脆性材料加工,除了其使用脉冲光纤激光器的熔融切割技术之外,
其SmartCleave
FI激光切割工艺,自从2014年推出以来,已经在工业生产和一些利基市场中获得了成功应用。这种切割工艺,能在加工过程中在工件上产生足够的内应力,从而达到加工区域自动分离。对于非强化玻璃、蓝宝石或陶瓷,可以借助较低的机械力或热力很容易地实现分离。
2017年3月14日下午15:30分,在慕尼黑上海光博会现场,罗芬将举办展台活动,这是Coherent收购Rofin在国内的首次亮相,相信合并之后的战略发展一定会紧抓眼球。
SmartCleave
FI工艺可以切割任意形状,如直线、曲线、有角度的或倒角切割,可切割管状或曲面件;表面光洁,基本没有碎屑,典型的表面粗糙度值小于1μm;切割速度大于300mm/s;切割玻璃的厚度范围在100μm~10mm之间;适用于玻璃、蓝宝石、水晶、陶瓷等脆性材质。
最近Photonics Industries (PI)公司新推出的RGH 1064系列高脉冲能量皮秒(10~15ps)激光器,被ATTON Eng 公司用于切割平板显示器和移动设备上使用的薄片玻璃,在切割表面上获得了镜面般的光洁度。
据悉ATTON
Eng
利用PI的RGH激光器开发出了一种称为“镜面专利”切割工艺,该工艺已经获取专利。相比于其他超快激光玻璃切割方案所实现的ra〜100nm的切割面粗糙度,这项工艺能实现ra〜0.005㎛(即〜5nm)的侧壁粗糙度,在切割面上实现“镜面”般的光滑质量,同时还能保持优异的强度,这无疑又是玻璃、蓝宝石和陶瓷等脆性材料切割领域的一把新利器。
RGH系列激光器体积小巧,脉冲可控,可按需单独触发,重复频率范围从单发到8MHz。用户可以改变工作功率或脉冲能量,以最大限度地提高工艺灵活性。RGH系列可在1064nm输出功率高达70W的功率,可提供700uJ的脉冲能量。
小结
强化玻璃、蓝宝石和其他脆性、透明材料的独特性能,将促使其在消费电子、医疗设备、集成电路、建筑、汽车、航空航天等市场领域获得不断增长的用途。特别是在以智能手机、可穿戴设备为首的消费电子产品中,对强化玻璃和蓝宝石的应用,将具有很大增长空间。因此,市场对脆性材料激光加工的需求非常看好。
在市场高需求的同时,来自市场要求减少加工步骤、减少材料浪费以及干性制程等因素的持续驱动,也正在强烈地推动着激光器制造商和激光系统集成商提供不断探讨,要求他们不但能提供传统机械加工的替代方案,而且还要不断提升激光加工方案的综合性能,以在加工质量、产品良率、加工速度及量产化方面有所突破。上文提及的厂商仅是活跃在非金属加工领域的少数几家,这个领域发展的背后是更多厂商的努力,其他像华工激光、通快、武汉华日激光等众多国内外厂商,都为激光非金属加工、特别是强化玻璃和蓝宝石等脆性材料加工的发展,贡献了不小力量。