无论在哪个行业,企业都有机会利用人工智能,创造出前所未有的业务扩张、制造利润和可持续发展,但是为了充分发挥人工智能的潜力,他们必须充分准备好迎接随之而来的混乱。
作为一个新的生产要素,人工智能将与传统的资本和劳动力互相作用,创造出新的挑战,领导者将需要以新的、前所未有的方式更新自己的工作方式,因为他们在公司的角色与其它角色越来越互相依赖。为了公司为人工智能的成功做好准备。
商业领袖们有机会采用以下8种策略。
1、AI策略和领导力:在太多的公司和行业中,人工智能的动力和兴趣仍然来自于公司的中下层,从接触技术的数字狂热者们中来,他们自身希望人工智能能够发展,并为此十分积极兴奋。但是,我们的分析师建议:想要从AI中获得真正的价值,需要公司顶层的认可和积极行动,至关重要的第一步是让人工智能的好处在公司的高层中切实可见。
这意味着花时间与真正的人工智能机器在一起工作,与它们互动,询问和测试它们。没有什么可以替代参观人工智能实验室或创新中心,在那里,专家可以进行探索,可以进行思想测试,也可以开发原型。在未来公司的发展中,人工智能发展的路线规划图将是必不可少的。将AI作为关键的推动者应该是公司发展业务的计划之一。
因此,来自企业的领导者和战略规划人员需要充分掌握人工智能,才能有效地改变现有的商业计划,定义关键的决策点,并引导正确的投资决策。
2、把HR改造成HAIR(AI人力资源):由于人工智能是虚拟的劳工,它将与工作人员互动,贡献和增加价值,就像人类的同事一样。首席人力资源官的角色不仅要管理员工,还要管理人工智能员工——这就是HAIR(人工智能人力资源)。
这将引发一些问题,例如:企业如何重新构建绩效考核标准?如何优化人工智能和人类劳工之间的人力需求关系?结论是:在商业战略和创新方面,首席人力资源官将发挥更大的作用,并对人工智能技术有更大的技术理解,以及理解这些技术将如何影响未来的工作。人力资源部门功能本身也需要将人工智能技术纳入其工作的各个方面,从招聘到退休。
例如,SAP的成功因素有助于企业将人力资源管理从“孤立的自我服务转变为智能服务”。该应用程序由微软公司使用,可以同步标准程序,提供员工协作平台,从工作数据中获取可执行的见解,并预测资源决策对其他业务领域的影响。
3、与机器一起学习:要充分发挥人工智能的潜力,人类和机器智能必须紧密结合。在劳动力中,有必要开发新的技术来越过已有的技术专长,重新强调人类能力——判断能力、沟通能力、创造性思维能力——来补充机械的技术。
人工智能不仅会改变人们学习的东西,也会改变他们学习的方式,从传统上来说,职业道路遵循着从入门到经验丰富的线性过程,但是,由于人工智能会代替人类完成普通和低附加值的工作,年轻的专业人士和年长的员工之间会出现技能鸿沟,有工作经验的员工会更加得心应手,为了让企业适应不断变化的自然学习过程和员工培训流程,企业领导者可以专注于员工的需求,特别是在灵活技能的开发领域。
例如,万事达卡正在试用一种AI软件,它利用经验丰富的员工的知识,帮助他们的工作人员成为更好的卖家,结合人类和大数据的见解,软件可以将经验丰富的人的专业知识扩展到整个团队,减少对大型培训团队的需求,集中化的知识经验输入AI可以作为销售团队的每个成员的个性化顾问,以便优化他们的销售策略。
4、任命一名首席数据供应链官:人工智能的性能将直接依赖于可用数据的质量和数量。埃森哲的研究显示,大多数高管不确定自己从数据分析项目中获得的商业成果,这可能意味着企业数据仍未得到充分利用,尽管许多大公司已经将首席数据官(CDO)添加到高管层(Gartner估计,到2019年,90%的大型企业将拥有一个CDO),但这些高管的一个关键关注点是数据安全、监管和治理,而不是管理数据,让数据形成AI的进化供应链。
首席数据供应链官将需要构建一个完整的、端到端的数据供应链,考虑:内部和外部数据源之间的平衡是什么?公司每天的数据是多少?数据存储在哪里?我们的公司如何简化数据访问?诸如此类的问题。
5、创造一个开放的人工智能文化:企业文化必须适应其新的人工智能员工的形象,人类和机器将相互协作、相互教授,互相学习。这需要信任、开放和透明,就像任何合作关系一样。例如,人们一开始可能会指责机器的性能不太好或者错误的输出结果,而不是定义缺陷在哪里——无论人或机器——并改进它们。就像不和谐的人际关系、敌对的交易互动,这将成为共同克服困难、最大化共享价值的障碍,而不是通过帮助计算机,最终达到帮助自己的目的。
人工智能对工作安全、工资和隐私的影响,也会影响员工的态度,以及他们在工作中如何接纳AI的行为。领导者有责任解释混合劳动力带来的风险和机会。但它们也可以塑造文化和指导方针,使风险最小化,并使机会最大化。通过主动使用人工智能本身来改善职场文化,公司可以更进一步,人工智能解决方案已经存在,例如,它可以通过自然语言的处理来检测情绪压力和员工倦怠,帮助管理者塑造和改善工作场所的文化氛围和满意度。
6、超越自动化:在过去,自动化一直是商业战略的关键,然而,随着人工智能技术的进步,企业需要超越自身的能力,来驾驭智能动力、自学和自我管理的机器。
埃森哲的研究显示,人工智能的潜在好处远比过去的自动化带来的影响大得多,举例来说,在1993年至2007年之间,传统的自动化系统据估计已经产生了0.9%的额外年增长率,而在发达经济体中则增长了0.9%。然而,在芬兰,人工智能的未来影响可能会比传统自动化高出70%,而美国这一比例为50%。因此,接纳人工智能可以确立公司的强大竞争优势。例如,Bosch正在把人工智能放在他们的业务的前沿。该公司的“思维工厂”目前在Bosch在德国汽车工厂中推出,目的是让人工智能机器能够自我诊断技术故障,自动订购替换部件,并预测维修需求。
总体而言,博施预测,到2020年,智能系统和机器的广泛使用将带来超过20亿美元的额外收入和储蓄。
7、把大众带进云技术中:在过去的十年里,企业已经利用了大众的力量去开拓创新模式。与此同时,云技术提供了一个机会,可以快速降低计算成本,并且不受内部IT结构的限制,创新的下一步将是把云端的众包数据与AI的能力结合,创造新的、具有颠覆性的商业机会,为此,谷歌云平台和亚马逊网络服务等云平台已经开始使用。
8、用算法来衡量你的回报:衡量生产要素的传统因素包括资本回报率(ROC),以及员工的业绩指标,作为一个新的生产要素,人工智能将会采取新的或适应性的措施,与传统资产的贬值不同,人工智能资产因为它们的自我学习技术,随着时间的推移而可以不断获得价值,这种复合资产增值效应为早期人工智能投资的公司创造了更高的回报。
此外,尽管它的一些应用程序有明确的结果,但人工智能的学习本质意味着,许多收益还尚未终止确定,因此,在人工智能时代,追踪资本投资的传统措施将会过时,首席财务官们将需要一个新的工具箱来衡量“人工智能的回报”。也许它将与每一种算法产生的价值有关,或者是对初始支出和持续的成本进行计算,其中大部分的收益和成本都将在未来的时期出现,投资者将在对它有信心的基础上,对未来的价值进行评估,这种复杂性可能会吓退人力的投资者,强调了对资本支出和估值模型的新思路和新术语的迫切需求,或许,人工智能本身就会被用来计算更准确的,关于人工智能的预测。
“为了抓住人工智能的发展机遇,企业现在就开始采取行动,制定围绕人工智能的战略,将人们置于中心,并承诺开发负责任的人工智能系统,这些系统与道德和伦理价值观相一致,从而推动积极的结果,并解放人类,去做他们最能做的事情——想象、创造和创新。”PaulDaugherty,埃森哲的首席技术和创新官如是说。
建立人工智能GVA影响水平模型