专栏名称: 中关村互联网教育创新中心
“互联网+教育”产业专业园区;“互联网+教育”助力创新创业;打造具有全球影响力的科技创新中心。
目录
相关文章推荐
紫金天风期货研究所  ·  LPG:3-4月差高位 ·  昨天  
中关村储能产业技术联盟  ·  聚焦新型储能/氢能/能源数智化!国家能源局启 ... ·  2 天前  
南方能源观察  ·  “深度求索”来了,电力不再是AI发展瓶颈? ·  3 天前  
能源电力说  ·  全国各地2月峰谷电价 ·  3 天前  
能源电力说  ·  全国各地2月峰谷电价 ·  3 天前  
51好读  ›  专栏  ›  中关村互联网教育创新中心

看点丨“人工智能+教育”的现状、挑战与进路

中关村互联网教育创新中心  · 公众号  ·  · 2024-08-21 16:42

正文


“人工智能+教育”的推进,需要在技术应用上坚持技术祛魅与技术化归相结合,在数据安全与隐私保护方面要注重数据运作与规范管理相配合,以降低安全风险。 同时,在教育价值实现层面上,要回归教育本质,确保技术服务于教育过程,而非主导或取代教育过程,并探索多元化的人才培养模式。






“人工智能+教育”的内涵与特征



“人工智能+教育”是一个综合性的概念,它指的是将人工智能技术深度融入教育领域,通过智能化的手段来优化教育环境,从而推动传统教育模式、教学方法和学习体验发生根本性变革的一种新型教育模式。


新场景教育:延展教育的深度和广度。 随着“人工智能+教育”的深度融合,传统的教育模式正在被重新定义,教育的边界也在不断被拓宽。“人工智能+教育”通过构建新型教育场景,极大地延展了教育的深度和广度,打破了教育的时间和空间限制。借助人工智能技术,学习者可以随时随地通过在线学习平台进行学习,通过智能辅导系统能够获得即时的学习反馈和答疑解惑,通过模拟仿真学习系统获得对知识的更深入理解,大大提高了学习深度和学习效率。


个性化学习:实现教育资源的精准匹配。 个性化学习是“人工智能+教育”的基本特征之一,也是其优势所在。借助人工智能技术能够全面、准确、及时地收集学习者的学习轨迹,掌握学习者的学习偏好,从而通过精准计算,为学习者提供定制化的学习服务,实现学习者的兴趣、能力与学习资源和学习方式的精准匹配,提升学习效率和效果。


自适应调整:赋能学习过程的动态适应。 自适应性是“人工智能+教育”的重要特征。“人工智能+教育”所具备的自适应调整能力,可以根据学习者的学习进度和反馈,动态地调整学习的内容和难度,使得学习者始终在最适合自己的学习方式和学习难度区域内学习。此外,自适应调整还可以帮助学习者发现自己的学习盲点和薄弱环节,及时查漏补缺,进一步提升学习效果。


沉浸式体验:持续催生教育创新动能。 在“人工智能+教育”这一新场景教育模式下,沉浸式体验正逐步成为催生教育创新的重要引擎。“人工智能+教育”通过结合先进的虚拟现实(VR)和增强现实(AR)技术,创造沉浸式的学习环境,将抽象知识具象化,为学习者提供身临其境的学习体验,使得教育过程更加生动、形象。在这种环境中,学习者不仅可以更加直观地理解和掌握知识,而且能够更深入地探索和体验所学知识,进而有效激发学习者的创造力,为教育创新提供源源不断的创新动能。通过持续催生创新动能,“人工智能+教育”也将不断推动教育模式的变革和创新,以动态适应新时代教育发展的变革性需求。




“人工智能+教育”的发展现状



人工智能与教育的结合,无论是从供给侧还是需求侧,都为教育领域带来了深远的影响。


供给侧视角:政策供给与技术应用不断推动“人工智能+教育”创新发展


人工智能技术的不断进步为其在教育领域的应用提供了条件,人工智能相关法律法规和政策的逐步跟进为“人工智能+教育”的发展提供了保障,也使得人工智能技术在教育领域的应用也日益广泛和深入。因此,政策供给与技术赋能是从供给侧视角分析“人工智能+教育”发展的基本维度。


在基础教育领域,人工智能算法和大数据分析技术的应用,使得教育机构能够更精确地了解学生的学习情况,从而为他们提供更加个性化的学习资源。人工智能技术的应用范畴已显著扩展,涵盖了智能教学辅助、医学教育中的人工智能问诊系统、智慧作业系统、个性化学习方案推荐,以及外语学习中的语言学习与评测、智能分析与评估等多个领域。目前智能学习软件已在基础教育阶段得到广泛运用,为学生提供了有效的辅助学习工具。 在高等教育领域,2024年4月17日,教育部公布了首批18个“人工智能+高等教育”典型应用场景案例,包括在教育教学模式创新方面的应用,如北京航空航天大学的人工智能赋能的全过程交互式在线教学平台、北京师范大学的创新“AI+”课堂教学智能评测。 还包括人工智能技术在具体技术领域和能力素养培养中的应用,包括北京邮电大学的“‘码上’——大模型赋能的智能教学应用平台”以及哈尔滨工业大学的“人工智能技术在自主学习模式下电工电子实验教学中的应用”等案例。 此外,在人文社会科学教育中也有推广应用,如中国传媒大学的“AIGC赋能传统文化传承与创新”等。


需求侧视角:人工智能技术发展不断满足教育高质量发展的现实需要


从需求侧的角度来看,人工智能技术精准地满足了当前教育高质量发展的现实需要,它不仅能够实现个性化学习,还提供了一系列高效的学习工具,助力学生快速提升学习效率和效果。


个性化学习的现实需要。随着教育理念的转变,学生越来越需要个性化的学习方案。每个学生都有不同的学习习惯、兴趣和能力,传统的“一刀切”的教学模式已经无法满足他们的需求。而人工智能技术可以根据学生的不同学习情况和学习偏好,为他们定制个性化的学习方案,不仅包括在学习内容和难易程度上的精准匹配,还包括学习方法和学习进度上的有针对性推荐和个性化设置,真正做到最大可能地满足学生个性化学习的现实需要。


高效学习的迫切需要。随着人工智能技术的进步,各种大模型在教育领域开始应用推广,为学生提供了众多智能学习工具。传统的教育方式往往以文字和图片为主,对于学生来说可能较为抽象和难以理解,而虚拟现实或增强现实技术通过创建生动的三维场景,可以将知识以更直观、更有趣的方式呈现出来,如历史事件的重现、科学实验的模拟等,让学生可以身临其境般地体验各种学习场景。




“人工智能+教育”的问题挑战




01、技术层面的挑战

技术适用性挑战。 人工智能技术尚未达到完全成熟的阶段,这可能导致个性化方案精准性有所欠缺,同时,在数据资源有限的情况下,模型亦存在以偏概全的现象。这些问题不仅影响了人工智能在教育中的深度应用,也导致市场上的许多教育人工智能产品在实际应用中显得不够“智能”,难以满足教育场景中多变且复杂的需求。


技术依赖风险。 即教育者和管理者可能会过度依赖这些技术来解决教学和管理上的问题,学习者也可能过度依赖人工智能技术获取知识和信息,这种依赖可能导致教与学的“技术依赖症”,而忽视教学过程中的反思和学习过程中的独立思考重要性。



02、数据安全与隐私保护的挑战

数据安全的挑战。 在教育领域中,所累积的数据不仅涵盖了学生的基础个人信息,更涉及他们学习过程中的重要记录,如学习进度、学业成绩以及行为模式等敏感数据。这类信息具有高度的隐私性和敏感性,若不慎泄露或被恶意利用,将对学生个体的安全构成严重威胁,并可能对整体教育系统的稳定与健康运行产生不良影响。


隐私保护的挑战。 在“人工智能+教育”场景下,大量的学生数据被收集和分析,以便为每个学生提供个性化的学习方案。学生的个人信息、学习行为和成绩等都属于个人隐私范畴。然而,在实践中,由于理念、技术和管理等多方面因素的影响,学生隐私的保护可能会面临不确定性。



03、价值层面的挑战

技术产品的价值功能缺位。 教育的目标远不止知识的传授,还包括学生的全面发展,如社交技能、心理素质、道德品质等方面的培养。而现有的人工智能教育产品在这些素质方面的培养则显得不足,在一定程度上限制了人工智能技术在教育领域的全面应用和深远影响。


不同价值观的协调难题。 推动“人工智能+教育”的融合进程中,与社会的核心价值观和伦理道德观相契合,已成为一项亟待解决且充满挑战的任务。具体而言,不同场景下对文化的理解和实践存在显著差异。



04、知识生产与传播方式方面的挑战

知识生产方式变革对学生独立思考的挑战。 知识生产方式的自动化和智能化降低了知识获取的门槛,但过度依赖人工智能生成的内容可能会形成学生在学习上的惰性,导致学生逐渐丧失自主寻找、筛选和整合信息的能力。


知识传播方式上的范式革命对学校功能的挑战。 传统的“师-生”二元教学模式正逐渐转变为“师-机-生”的三元结构。这种转变也意味着人们对学校的观念将应时而变,即学校知识传授功能将会被弱化,这也对学校在知识传播上的功能定位提出了挑战。



05、教师和学生角色适应的挑战

教师角色适应的挑 战。 在“人工智能+教育”场景下,教师不再仅仅是知识的传授者,而是要逐渐演变为学生学习过程中的引导者和辅助者。教师首先需要正确认识和掌握新技术,深入理解人工智能的特点、应用场景以及在教学中的潜力与价值。这不仅要求教师具备扎实的专业知识,还要求他们掌握一系列新的教学工具和方法,这种转变无疑对教师提出了更高的要求。


学生角色适应的挑战。 在“人工智能+教育”场景下,学生不仅要具备良好的自主学习能力,还要具备与人工智能技术进行有效互动的能力。这对在传统学习模式下处于被动接受者的部分学生而言,自主学习将面临前所未有的挑战和困境,可能会进一步拉大学业成绩差距。



06、资源共享方面的挑战

“算法黑箱”引发的透明度担忧。 “算法黑箱”指的是算法的内部逻辑和决策过程对用户来说是不透明和难以理解的,因此很难检测和纠正其中的错误,基于这些错误而做出的决策,则可能对公平性产生负面影响。具体来说,由于算法是基于大量数据进行学习和决策的,如果这些数据本身存在偏见,那么算法很可能会继承并放大这些偏见;当算法的决策过程对用户不透明时,学生、家长和教师等相关主体则可能难以理解决策的缘由,进而对决策公正性产生质疑。


技术势差影响应用成本。 技术势差主要指不同地区及学校间在技术条件,即技术基础设施及其所依赖的教育资源方面所存在的差距。具体来说,部分发达地区和学校由于具备较为丰富的教育资源和财政经费支持,能够更早、更全面地利用人工智能技术来辅助教学。反之,偏远地区或经济条件较差的学校则可能无法承担高昂的技术成本,从而在人工智能教育资源配置方面面临不同的境遇。




“人工智能+教育”的推进路径




01、技术应用层面:

坚持技术祛魅与技术化归相结合


在“人工智能+教育”的发展过程中,我们必须坚持技术祛魅与技术化归相结合的原则,以确保先进技术能够真正服务于教育的本质。技术祛魅意味着我们需要打破对人工智能技术的过度神秘化和盲目崇拜,正视其作为一种工具的本质。技术化归强调的是将人工智能技术恰当地融入教育过程中,使其成为提升教学效果、辅助教师工作、促进学生学习的有力工具,而不是用来完全替代教师的角色或传统的教育方式。



02、数据安全与隐私保护层面:

注重数据运作与规范管理相配合,消解“人工智能+教育”的安全风险


首先,加强数据安全立法,清晰界定教育机构在数据收集、存储和使用等各环节的责任与义务。其次,建立数据全生命周期管理体系。再次,完善隐私保护机制。最后,加强规范管理与人员培训。



03、价值层面:

确保技术服务于教育过程,而非主导或取代教育过程

明确人工智能在教育中的辅助地位;关注学生的全面发展;增强人工智能教育产品对不同文化场景的包容性。



04、知识生产传播层面:

探索多元化人才培养模式

首先,从知识生产方式变化的角度来看,人工智能技术的引入为学生提供了前所未有的便利,但同时也带来了独立思考能力培养的挑战,必须采取有效措施克服学生对人工智能的过度依赖。


其次,从知识传播方式变革的角度来看,人工智能技术改变了知识传播的方式,由师生之间的双向互动转向“师-机-生”间的多维互动。在“人工智能+教育”场景下,“师-机-生”的三元结构强调的是三者的紧密互动,利用人工智能技术实现教育和学习资源的高度整合,已成为提升教师教学效果和满足学生个性化学习需求的关键环节。



05、师生角色适应层面:

教学能力提升与自主学习能力培养

首先,加强对教师的人工智能应用技能培训。其次,强化学生自主学习能力培养。学生也需要学会灵活利用人工智能技术来增强学习效果,如可以利用智能教学系统进行个性化的学习路径设计,借助虚拟现实和增强现实技术进行沉浸式学习等。



06、成果共享层面:

优化教育资源配置,打破技术势差和算法黑箱

通过政策引导优化教育资源配置是克服技术势差的关键。普及人工智能教育也是克服“技术势差”的重要途径之一。通过开设人工智能相关课程、举办科普讲座、提供实践平台等多种方式普及人工智能教育,可以为所有学生提供一个共同的技术起点,进而缩小不同学生群体之间的技术差距,消除由技术差异带来的资源共享差异。此外,促进算法决策透明化也是促进资源共享的另一重要举措。


关注官方视频号
获取更多教育资讯







请到「今天看啥」查看全文