专栏名称: AI前线
我们专注大数据和机器学习,关注前沿技术和业界实践。每天发布高质量文章,技术案例等原创干货源源不断。同时有四千人的社群微课堂,每周一次业界大牛技术分享,也希望你能从这里分享前沿技术,交流深度思考。
目录
相关文章推荐
学习强国  ·  我国将建100个以上可信数据空间 ·  2 天前  
学习强国  ·  我国将建100个以上可信数据空间 ·  2 天前  
数据派THU  ·  报名 | 全球证书项目Innovation ... ·  3 天前  
数据派THU  ·  一文解读:时序基础模型的缩放定律 ·  6 天前  
大数据分析和人工智能  ·  我,在腾讯月薪6万,离职后突然惊醒:人越努力 ... ·  1 周前  
软件定义世界(SDX)  ·  信创觉醒!央国企信创数字化转型是国家信息安全 ... ·  5 天前  
51好读  ›  专栏  ›  AI前线

腾讯大数据已将第三代高性能计算平台Angel代码在Github上开放

AI前线  · 公众号  · 大数据  · 2017-06-16 17:17

正文

 
深圳 - 腾讯大数据已在Github上推出面向机器学习的第三代高性能计算平台Angel的代码。去年 12 月腾讯大数据在 KDD China 技术峰会上宣布准备开源,经过半年的准备后,正式开源代码:https://github.com/Tencent/angel。

Angel 是一个基于参数服务器(Parameter Server)理念的机器学习框架,它能让机器学习算法轻松运行于高维度模型之上。

Angel 的核心设计理念围绕模型。它将高维度的大模型,合理切分到多个参数服务器节点,并通过高效的模型更新接口和运算函数,以及多变的同步协议,轻松实现各种高效的机器学习算法。

Angel 由 Java 和 Scala 开发,基于 Yarn 调度运行,既能独立运行,高效运行特有的算法,亦能作为 PS Service,支持 Spark 或其它深度学习框架,为其加速。它基于腾讯内部的海量数据进行了反复的实践和调优,并具有广泛的适用性和稳定性,模型维度越高,优势越明显。

研发背景  

腾讯公司是一家消息平台 + 数字内容的公司,本质上也是一家大数据公司,每天产生数千亿的收发消息,超过 10 亿的分享图片,高峰期间百亿的收发红包。每天产生的看新闻、听音乐、看视频的流量峰值高达数十 T。这么大的数据量,处理和使用上,首先业务上存在三大痛点:

第一,需要具备 T/P 级的数据处理能力,几十亿、百亿级的数据量,基本上 30 分钟就要能算出来。

第二,成本需低,可以使用很普通的 PC Server,就能达到以前小型机一样的效果;

第三,容灾方面,原来只要有机器宕机,业务的数据肯定就有影响,各种报表、数据查询,都会受到影响。

其次是需要融合所有产品平台的数据的能力。“以前的各产品的数据都是分散在各自的 DB 里面的,是一个个数据孤岛,现在,需要以用户为中心,建成了十亿用户量级、每个用户万维特征的用户画像体系。以前的用户画像,只有十几个维度主要就是用户的一些基础属性,比如年龄、性别、地域等,构建一次要耗费很多天,数据都是按月更新”。

另外就是需要解决速度和效率方面的问题,以前的数据平台“数据是离线的,任务计算是离线的,实时性差”。

“所以,我们必须要建设一个能支持超大规模数据集的一套系统,能满足 billion 级别的维度的数据训练,而且,这个系统必须能满足我们现网应用需求的一个工业级的系统。它能解决 big data,以及 big model 的需求,它既能做数据并行,也能做模型并行。”

经过 7 年的不断发展,历经了三代大数据平台:第一代 TDW(腾讯分布式数据仓库), 到基于 Spark 融合 Storm 的第二代实时计算架构,到现在形成了第三代的平台,核心为 Angel 的高性能计算平台。

Angel 项目在 2014 年开始准备,15 年初正式启动,刚启动只有 4 个人,后来逐步壮大。项目跟北京大学和香港科技大学合作,一共有 6 个博士生加入到腾讯大数据开发团队。目前在系统、算法、配套生态等方面开发的人员,测试和运维,以及产品策划及运维,团队超过 30 人。

Angel 平台是使用 Java 和 Scala 混合开发的机器学习框架,用户可以像用 Spark, MapReduce 一样,用它来完成机器学习的模型训练。

Angel 采用参数服务器架构,支持十亿级别维度的模型训练。采用了多种业界最新技术和腾讯自主研发技术,如 SSP(Stale synchronous Parallel)、异步分布式 SGD、多线程参数共享模式 HogWild、网络带宽流量调度算法、计算和网络请求流水化、参数更新索引和训练数据预处理方案等。

这些技术使 Angel 性能大幅提高,达到常见开源系统 Spark 的数倍到数十倍,能在千万到十亿级的特征维度条件下运行。

自今年初在腾讯内部上线以来,Angel 已应用于腾讯视频、腾讯社交广告及用户画像挖掘等精准推荐业务。未来还将不断拓展应用场景,目标是支持腾讯等企业级大规模机器学习任务。

腾讯为何要选择自研?  

首先需要一个满足十亿级维度的工业级的机器学习平台,蒋杰表示当时有两种思路: 一个是基于第二代平台的基础上做演进,解决大规模参数交换的问题。另外一个,就是新建设一个高性能的计算框架。

当时有研究业内比较流行的几个产品:GraphLab,主要做图模型,容错差;Google 的 Distbelief,还没开源;还有 CMU Eric Xing 的 Petuum,当时很火,不过它更多是一个实验室的产品,易用性和稳定性达不到要求。

“其实在第二代,我们已经尝试自研,我们消息中间件,不论是高性能的,还是高可靠的版本,都是我们自研的。他们经历了腾讯亿万流量的考验,这也给了我们在自研方面很大的信心”。

第三代高性能计算平台

“同时,我们第三代的平台,还需要支持 GPU 深度学习,支持文本、语音、图像等非结构化的数据”。

Angel 的整体架构  

Angel 架构图

Angel 是基于参数服务器的一个架构,整体架构上参考了谷歌的 DistBelief。Angel 在运算中支持 BSP、SSP、ASP 三种计算模型,其中 SSP 是由卡耐基梅隆大学 EricXing 在 Petuum 项目中验证的计算模型,能在机器学习的这种特定运算场景下提升缩短收敛时间。Angel 支持数据并行及模型并行。

在网络上有原创的尝试,使用了港科大杨强教授的团队做的诸葛弩来做网络调度,

ParameterServer 优先服务较慢的 Worker,当模型较大时,能明显降低等待时间,任务总体耗时下降 5%~15%。

另外,Angel 整体是跑在 Gaia(Yarn)平台上面的。

主要的模块有 4 个:

   Client

Angel 的客户端,它给应用程序提供了控制任务运行的功能。目前它支持的控制接口主要有:启动和停止 Angel 任务,加载和存储模型,启动具体计算过程和获取任务运行状态等。

   Master

Master 的职责主要包括:原始计算数据以及参数矩阵的分片和分发;向 Gaia(一个基于 Yarn 二次开发的资源调度系统)申请 Worker 和 ParameterServer 所需的计算资源; 协调,管理和监控 Worker 以及 ParameterServer。

   Parameter Server

ParameterServer 负责存储和更新参数,一个 Angel 计算任务可以包含多个 ParameterServer 实例,而整个模型分布式存储于这些 ParameterServer 实例中,这样可以支撑比单机更大的模型。

   Worker

Worker 负责具体的模型训练或者结果预测,为了支持更大规模的训练数据,一个计算任务往往包含许多个 Worker 实例,每个 Worker 实例负责使用一部分训练数据进行训练。一个 Worker 包含一个或者多个 Task,Task 是 Angel 计算单元,这样设计的原因是可以让 Task 共享 Worker 的许多公共资源。

Angel 的系统框架:

Angel 的设计理念  
   PS Service

Angel 支持两种运行模式:ANGEL_PS & ANGEL_PS_WORKER

  • ANGEL_PS: PS Service 模式,在这种模式下,Angel 只启动 Master 和 PS,具体的计算交给其他计算平台(如 Spark,Tensorflow)负责,Angel 只负责提供 Parameter Server 的功能。

  • ANGEL_PS_WORKER:启动 Master,PS 和 Worker,Angel 独立完成模型的训练。

   同步协议

支持多种同步协议:除了通用的 BSP(Bulk Synchronous Parallel)外,为了解决 task 之间互相等待的问题,Angel 还支持 SSP(Stale Synchronous Parallel)和 ASP(Asynchronous Parallel)

   良好的可扩展性
  • psf(ps function):为了满足各类算法对参数服务器的特殊需求,Angel 将参数获取和更新过程进行了抽象,提供了 psf 函数功能。用户只需要继承 Angel 提供的 psf 函数接口,并实现自己的参数获取 / 更新逻辑,就可以在不修改 Angel 自身代码的情况下定制自己想要的参数服务器的接口。

  • 自定义数据格式:Angel 支持 Hadoop 的 InputFormat 接口,可以方便的实现自定义文件格式。

  • 自定义模型切分方式:默认情况下,Angel 将模型(矩阵)切分成大小相等的矩形区域;用户也可以自定义分区类来实现自己的切分方式。

   易用性
  • 训练数据和模型自动切割:Angel 根据配置的 worker 和 task 数量,自动对训练数据进行切分;同样,也会根据模型大小和 PS 实例数量,对模型实现自动分区。

  • 易用的编程接口:MLModel/PSModel/AngelClient

   容错设计和稳定性
  • PS 容错

    PS 容错采用了 checkpoint 的模式,也就是每隔一段时间将 PS 承载的参数分区写到 hdfs 上去。如果一个 PS 实例挂掉,Master 会新启动一个 PS 实例,新启动的 PS 实例会加载挂掉 PS 实例写的最近的一个 checkpoint,然后重新开始服务。这种方案的优点是简单,借助了 hdfs 多副本容灾, 而缺点就是不可避免的会丢失少量参数更新。

  • Worker 容错

    一个 Worker 实例挂掉后,Master 会重新启动一个 Worker 实例,新启动的 Worker 实例从 Master 处获取当前迭代轮数等状态信息,从 PS 处获取最新模型参数,然后重新开始被断掉的迭代。

  • Master 容错

    Master 定期将任务状态写入 hdfs,借助与 Yarn 提供的 App Master 重试机制,当 Angel 的 Master 挂掉后,Yarn 会重新拉起一个 Angel 的 Master,新的 Master 加载状态信息,然后重新启动 Worker 和 PS,从断点出重新开始计算。

  • 慢 Worker 检测

    Master 会将收集一些 Worker 计算性能的一些指标,如果检测到有一些 Worker 计算明显慢于平均计算速度,Master 会将这些 Worker 重新调度到其他的机器上,避免这些 Worker 拖慢整个任务的计算进度。

Spark on Angel  

Angel 在 1.0 版本开始,就加入了 PS-Service 的特性,不仅仅可以作为一个完整的 PS 框架运行,也可以作为一个 PS-Service,为不具备参数服务器能力的分布式框架,引入 PS 能力,从而让它们运行得更快,功能更强。而 Spark 是这个 Service 设计的第一个获益者。

作为一个比较流行的内存计算框架,Spark 的核心概念是 RDD,而 RDD 的关键特性之一,是其不可变性,来规避分布式环境下复杂的各种并行问题。这个抽象,在数据分析的领域是没有问题的,能最大化的解决分布式问题,简化各种算子的复杂度,并提供高性能的分布式数据处理运算能力。

然而在机器学习领域,RDD 的弱点很快也暴露了。机器学习的核心是迭代和参数更新。RDD 凭借着逻辑上不落地的内存计算特性,可以很好的解决迭代的问题,然而 RDD 的不可变性,却不适合参数反复多次更新的需求。这个根本的不匹配性,导致了 Spark 的 MLLib 库,发展一直非常缓慢,从 15 年开始就没有实质性的创新,性能也不好,从而给了很多其它产品机会。而 Spark 社区,一直也不愿意正视和解决这个问题。

现在,由于 Angel 良好的设计和平台性,提供 PS-Service,Spark 可以充分利用 Angel 的参数更新能力,用最小化的修改代价,让 Spark 也具备高速训练大模型的能力,并写出更加优雅的机器学习代码,而不必绕来绕去。

Angel 已经支持了 20 多种不同算法,包括 SGD、ADMM 优化算法等,我们也开放比较简易的编程接口,用户也可以比较方便的编写自定义的算法,实现高效的 ps 模型。并提供了高效的向量及矩阵运算库(稀疏 / 稠密),方便了用户自由选择数据、参数的表达形式。在优化算法方面,Angel 已实现了 SGD、ADMM,并支持 Latent DirichletAllocation (LDA)、MatrixFactorization (MF)、LogisticRegression (LR) 、Support Vector Machine(SVM) 等。

在 Github 的网页上,还专门介绍了该项目主要的算法:

  • Logistic Regression

  • Matrix Factorization

  • SVM

  • KMeans

  • GBDT

  • LDA

  • Spark on Angel Optimizer

Angel 的优势包括几点:

  1. 能高效支持超大规模(十亿)维度的数据训练;

  2. 同样数据量下,比 Spark、Petuum 等其他的计算平台性能更好;

  3. 有丰富的算法库及计算函数库,友好的编程接口,让用户像使用 MR、Spark 一样编程;

  4. 丰富的配套生态,既有一体化的运营及开发门户,又能支持深度学习、图计算等等其他类型的机器学习框架,让用户在一个平台能开发多种类型的应用。

Angel 做过哪些优化?  

Angel 是基于参数服务器的一个架构,与其他平台相比,在性能上很多优化。首先,我们能支持 BSP、SSP、ASP 三种不同计算和参数更新模式,其次,我们支持模型并行,参数模型可以比较灵活进行切分。第三,我们有个服务补偿的机制,参数服务器优先服务较慢的节点,根据我们的测试结果,当模型较大时,能明显降低等待时间,任务总体耗时下降 5%~15%。最后,我们在参数更新的性能方面,做了很多优化,比如对稀疏矩阵的 0 参数以及已收敛参数进行过滤,我们根据参数的不同数值类型进行不同算法的压缩,最大限度减少网络负载,我们还优化了参与获取与计算的顺序,边获取参数变计算,这样就能节省 20-40% 的计算时间。

我们除了在性能方面进行深入的优化,在系统易用性上我们也做了很多改进。第一,我们提供很丰富的机器学习算法库,以及数学运算算法库;第二,我们提供很友好的高度抽象的编程接口,能跟 Spark、MR 对接,开发人员能像用 MR、Spark 一样编程;第三,我们提供了一体化的拖拽式的开发及运营门户,用户不需要编程或只需要很少的开发量就能完成算法训练;第四,我们内置数据切分、数据计算和模型划分的自动方案及参数自适应配置等功能,并屏蔽底层系统细节,用户可以很方便进行数据预处理;最后一点,Angel 还能支持多种高纬度机器学习的场景,比如支持 Spark 的 MLLib,支持 Graph 图计算、还支持深度学习如 Torch 和 TensorFlow 等业界主流的机器学习框架,提供计算加速。

Angel 的性能项目测试结果  

同等数据量下的性能测试。Angel 跟其他平台相比,比如 Petuum,和 spark 等,在同等量级下的测试结果,Angel 的性能要优于其他平台。比如用 Netflix 的数据跑的 SGD 算法,结果可以看上图中的对比。

超大规模数据的训练测试。目前 Angel 支持了很多腾讯内部的现网业务。举两个例子,比如,在构建用户画像方面,以前都是基于 Hadoop 和 Spark 来做,跑一次模型要 1 天甚至几天,话题只有 1k;而在 Angel 上,20 多亿文档、几百万个词,3000 亿的 token,1 个小时就跑完了。以前 Spark 能跑的,现在 Angel 快几十倍;以前 Spark 跑不了的,Angel 也能轻松跑出来。

大规模数据集的训练能力。例如腾讯视频的点击预测,同等数据量下,Angel 的性能是 Spark 的 44 倍以上。用了 Angel 以后,维度从千万扩展到亿,训练时间从天缩短到半小时,而准确度也有很大的提升。

为什么开源?  

Angel 不仅仅是一个只做并行计算的平台,它更是一个生态,我们围绕 Angel,建立了一个小生态圈,它支持 Spark 之上的 MLLib,支持上亿的维度的训练;我们也支持更复杂的图计算模型;同时支持 Caffe、TensorFlow、Torch 等深度学习框架,实现这些框架的多机多卡的应用场景。

Angel 的生态圈

腾讯大数据平台来自开源的社区,受益于开源的社区中,所以我们自然而然地希望回馈社区。开源,让开放者和开发者都能受益,创造一个共建共赢的生态圈。在这里,开发者能节约学习和操作的时间,提升开发效率,去花时间想更好的创意,而开放者能受益于社区的力量,更快完善项目,构建一个更好的生态圈。

我们目前希望能丰富 Angel 配套生态圈,进一步降低用户使用门槛,促进更多开发人员,包括学校与企业,参与共建 Angel 开源社区。而通过推动 Angel 的发展,最终能让更多用户能快速、轻松地建立有大规模计算能力的平台。

我们一直都向社区做贡献,开放了很多源代码,培养了几个项目的 committer,这种开放的脚步不会停止。

小结  

腾讯公司通过 18 年的发展今天已经成为了世界级的互联网公司。“在技术上,我们过去更加关注的是工程技术,也就是海量性能处理能力、海量数据存储能力、工程架构分布容灾能力。未来腾讯必将发展成为一家引领科技的互联网公司,我们将在大数据、核心算法等技术领域上进行积极的投入和布局,和合作伙伴共同推动互联网产业的发展。”


 


推荐文章
学习强国  ·  我国将建100个以上可信数据空间
2 天前
学习强国  ·  我国将建100个以上可信数据空间
2 天前
THLDL领导力  ·  终于找全了的心理效应,值得收藏!
8 年前
青年文摘  ·  世界如此奇妙,你出现得刚刚好
7 年前
化妆师MK-雷韵祺  ·  有了它,我永远都晒不黑
7 年前
懒人医学考试中心  ·  儿科考试开始--免费考试
7 年前