距离 Mirco Ravanelli 宣布打造新的语音工具包过去了一年多,SpeechBrain 真的如期而至。
机器之心报道,编辑:蛋酱。
语音处理技术的进步,是人工智能改变大众的生活的重要一环。深度学习技术的兴起,也让这一领域近年来得到了长足的发展。在过往,该领域的主要方法是为不同的任务开发不同的工具包,对于使用者来说,学习各个工具包需要大量时间,还可能涉及到学习不同的编程语言,熟悉不同的代码风格和标准等。现在,这些任务大多可以用深度学习技术来实现。
此前,开发者常用的语音工具有 Kaldi、ESPNet、CMU Sphinx、HTK 等,它们各有各的不足之处。以 Kaldi 为例,它依赖大量的脚本语言,而且核心算法使用 C++ 编写,再加上可能需要改变各种神经网络的结构。即便是拥有丰富经验的工程师,在调试的时候也会经历巨大的痛苦。
秉承着让语音开发者更轻松的原则,Yoshua Bengio 团队成员 Mirco Ravanelli 等人曾经开发了一个试图继承 Kaldi 的效率和 PyTorch 的灵活性的开源框架—— PyTorch-Kaldi ,但据开发成员本人认为「还不够完善」。
所以,在一年多前, Mirco Ravanelli 宣布要打造一款新的一体化语音工具包 SpeechBrain。该项目于近日正式开源,鉴于上述背景,SpeechBrain 诞生的主要宗旨是:够简单、够灵活、对用户友好。
项目地址: github.com/speechbrain…
作为一个基于 PyTorch 的开源一体化语音工具包,SpeechBrain 可用于开发最新的语音技术,包括语音识别、说话者识别、语音增强、多麦克风信号处理和语音识别系统等,且拥有相当出色的性能。团队将其特征概况为「易于使用」、「易于定制」、「灵活」、「模块化」等。
对于机器学习研究者来说,SpeechBrain 可轻松嵌入其他模型,促进语音技术的相关研究;对于初学者来说,SpeechBrain 也不难掌握,根据测试,一般开发者仅需要几个小时就能熟悉该工具包的使用。此外,开发团队也发布了很多教程以供参考( speechbrain.github.io/tutorial_ba… )。
总体来说,SpeechBrain 有以下几大亮点:
-
开发团队与 HuggingFace 集成一些预训练模型,这些模型具备可运行推理的接口。如果 HuggingFace 模型不可用,团队会提供一个 Google Drive 文件夹,包含所有对应的实验结果;