专栏名称: COMSOL
COMSOL Multiphysics 是一个理想的建模仿真工具,能够精确地再现您的产品设计思路中的重要特点,为您提供一个简单、集成的解决方案,满足您的应用需求。
目录
相关文章推荐
半导体行业联盟  ·  铠侠(中国)董事:整个行业一定会借AI的东风 ... ·  3 天前  
半导体行业联盟  ·  哈萨克斯坦首颗芯片点亮!RISC-V架构! ·  3 天前  
半导体行业联盟  ·  沸腾!华人掌控美国芯片四大家! ·  昨天  
半导体行业联盟  ·  高通,官宣重大并购 ·  3 天前  
OFweek维科网  ·  暴涨124.42%,又一锂电龙头成功上市! ·  3 天前  
51好读  ›  专栏  ›  COMSOL

在 COMSOL 中模拟二维带电粒子束

COMSOL  · 公众号  · 半导体  · 2017-06-14 09:54

正文

在之前的一篇推送文章中,我们介绍了概率分布函数(probability distribution function,简称 PDF)的含义,以及 COMSOL Multiphysics® 软件中的多种取样的方法。若要探究离子束和电子束是如何在真实环境中传播的,那么有关 PDF 的专业知识是必不可少的。在本篇文章中,我们将重点探讨“相空间”和“发射度”的概念,以及如何利用他们来描述束流离子或电子的释放问题。

离子束和电子束

离子或电子“束”指的是动能几乎相同、沿近似同一方向运动的粒子组成的集群。通常情况下,每个粒子的总动能比常温下粒子的热能大得多,因此粒子束拥有极佳的方向性。

首先我们来观察带电粒子束的二维图像。我们用 z 轴正方向表示束流传播方向(“轴向”),用 x 轴表示与传播方向垂直的方向(“横向”)。虽然一开始您或许会觉得这种表示方式十分奇怪,但是请记住,我们最终的讨论目的是三维束流,到时候您就会发现用 x 和 y 轴表示两个横向方向将会带来很大的方便。

如上文所述,束流的特点在于它是由大量运动方向和能量都近似相同的粒子组成的集群——然而这里的重点正是“近似”!现实中任何束流中的粒子都不可能具有完全相同的速度。事实上,与束流的释放和传播相关的数学问题基本上都涉及到了束流粒子位置和速度的微小变化。

我们可以借助“束包络”来表征束流形状,束包络指的是束流粒子的最外层,它能让我们了解束流的形状。如果束流存在一个锐减——即束流粒子的数密度在确定的位置上骤降为零——那么束包络或许只是一个曲线或包含所有粒子轨迹的表面。然而更常见的情况是,束流粒子的密度会在一个较大的距离内逐渐下降,因此束流终点和周围的空白空间并没有明确的界限。在这种情况下,束包络可以被定义为包含绝大部分发射粒子数的曲线或表面,通常包含 95% 左右。若束流的包络在传播方向上会逐渐变小,则此束流为“会聚”束流;若包络随着束流的传播而变大,则为“发散”束流。“束流腰部”指的是束流刚刚结束会聚并即将开始发散时的位置。我们将在下文中对此进行详细介绍。


比较层束流和非层束流

下图为一个简单的二维电子束,并描绘了其中具有代表性的粒子轨迹,模型暂时忽略了空间电荷效应及外力。坐标轴上添加了标签,以便指示轴向和横向。我们将它看成一个理想的“带状电子束”——也就是说,电子束在面外(y)方向上无限延伸。这些线指示了束流电子的路径,末端箭头表示各自的速度。每条线上的颜色表示电子在 x 坐标轴(或者说“横向位置”)上的变化,也称为“横向位移”。

请注意,我们选定原点是为了使 x 轴的起始端位于电子束的中心。同时将中心线或“标称轨迹”上的某一点作为起点,这会让横向粒子位置的测量变得十分容易。横向位置的变化率即“横向速度” v x

从上图和后文的图片中我们可以看出,横向位移和横向速度相当夸张,十分容易观察到。但实际上,与沿电子束轴线的位移和速度相比,它们往往显得极其渺小。

由于具有下列属性,上图中的电子束被称为“层束流”:

  1. 横向位置和速度之间存在一一对应的关系。在任意的横向位置上,电子束粒子的路径不会发生交叉。唯一的例外是会聚电子束,此类束流的全部粒子将交汇于同一点。

  2. 横向位置和速度的比例关系是呈线性的。

第二个属性具有重要的意义,因为它保证了之后的过程不会被违背初始属性。在下方图示中,会聚电子束的横向位置和速度之间为平方关系,而非线性关系。初始时(z = 0)粒子轨迹无相交,但在后来某一点上发生了交叉。在图表中的任意一个交点上,一个横向位置可能对应着多个横向速度值,这与第一条属性是相悖的。

如下图所示,对于层流束而言,除非束流是会聚束流(所有轨迹相交于同一点),否则层束流的粒子永远也不会发生碰撞。

在真实环境中,任意一个横向位置都会存在具有横向速度的粒子分布,并且粒子轨迹之间会不断相互交叉,所以真实的粒子束均为“非层束流”,上文讨论的层束流只是一种理想情况。下图显示了一种更贴近现实的非层束流的横向速度分布情况。

接下来,为了更好地理解层束流和非层束流之间的差异,我们来观察一下二者的“相空间分布”。相空间分布具有多种形式,不过在本文中,我们只需要将粒子作为二维空间中的分布的点来进行研究,其中两条坐标轴分别表示横向位置和速度。当然,我们也可以将位置和动量用作坐标轴,这样做虽然会影响分布区域,但不会从根本上改变其形状。借助“相图”绘图类型,我们可以很方便地在 COMSOL Multiphysics 中绘制上述的相空间分布状况。

首先,让我们观察一下层束流的相图。下图显示了时间 t = 0 时,一条释放边界上的分布情况。

正如我们所料,边界上的点形成了一条穿过原点的直线。(请记住,按照定义,层束流中粒子的横向位置和速度之间存在一种线性关系。)下图为非层束流的相图。

这些点不再位于同一条直线上,而是在以原点为中心的相空间中形成了一片边界模糊不清的云。这些点看似分布随机,位置并不存在任何明显的位置关联。为了更加清楚地了解相位空间分布,我们将此电子束的样本量大幅扩充到了 1000 颗粒子。

现在,我们得到了一张更加清晰的图像:粒子形成了一个相空间椭圆。椭圆中心的粒子最为密集,这说明与靠近束包络边缘的粒子相比,靠近电子束轴线的粒子速度分布范围更广。在束流物理中,这一类椭圆形的分布极其常见,不过在其他情况中,椭圆的比例和取向会发生变化,粒子具体位置也会相应地改变。与束包络的描述一样,相空间椭圆的数密度要么存在一个锐减,要么逐渐下降。在后一种情况中,我们可以对椭圆进行定义,使其包含特定比例的束流粒子,例如 95%。

在真实环境中,多数带电粒子束为近轴,这意味着与纵向速度相比,横向的速度分量非常小。在近轴极限处,我们可以使用粒子的横向位置 x 和倾角 x’ = v x / v z 对其进行描述。之所以可以将后者看为角,是因为 sin(x’) ≈ x’ 受近轴条件限制。束流粒子的 x 和 x’ 值的分布即迹空间分布,包含该分布的椭圆便是迹空间椭圆。

相空间椭圆的演化过程

上图中的椭圆关于 x 轴和 v x 轴近似对称。然而,这种情况不会一直持续下去;粒子束传播时,即使没有施加任何力,椭圆形状也会改变,这只是因为沿两条坐标轴的表达式是相互关联的。根据定义 dx / dt = v x ,横向速度值为正( v x > 0)的粒子在相空间中向右移动(x 轴正方向);同样地,横向速度值为负的粒子将向左移动。下图中的动画演示了当不考虑空间电荷效应时,漂移粒子束的相空间椭圆随时间的演化状况。


若椭圆关于 x 轴和 v x 轴镜面对称,我们便称此椭圆为“直立”的。直立的相空间椭圆对应的是束流轨迹上的束流腰部。

束流发射度简介

在束流物理场中,更为方便的做法是在迹空间(x-x’ 平面)中处理问题,而非在 x-v x 平面或 x-p x 平面中。一部分原因在于,与横向速度或动量相比,借助倾角 x’ 对束流形状进行可视化能获取更加实用的效果。迹空间椭圆(即位于 x-x’ 平面内且包含迹空间粒子的椭圆)的通式如下







请到「今天看啥」查看全文