专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
黄建同学  ·  Mark!Andrej Karpathy ... ·  14 小时前  
爱可可-爱生活  ·  【[1.7k星]Frappe ... ·  昨天  
机器之心  ·  免费!潞晨携手华为昇腾,国产算力DeepSe ... ·  2 天前  
人工智能那点事  ·  登山助力机器人在泰山试用!网友:感觉我又行了 ·  3 天前  
新智元  ·  o3-mini物理推理粉碎DeepSeek ... ·  4 天前  
51好读  ›  专栏  ›  机器学习研究会

【重磅】深度学习顶会 ICLR 2018 匿名提交论文列表(附pdf下载链接)

机器学习研究会  · 公众号  · AI  · 2017-10-30 22:36

正文

【导读】ICLR,全称为「International Conference on Learning Representations」(国际学习表征会议),2013 年才刚刚成立了第一届。这个一年一度的会议虽然今年2017年办到第六届,已经被学术研究者们广泛认可,被认为「深度学习的顶级会议」。这个会议由位列深度学习三大巨头之二的 Yoshua Bengio 和 Yann LeCun 牵头创办。Yoshua Bengio 是蒙特利尔大学教授,深度学习三巨头之一,他领导蒙特利尔大学的人工智能实验室(MILA)进行 AI 技术的学术研究。MILA 是世界上最大的人工智能研究中心之一,与谷歌也有着密切的合作。 Yann LeCun 就自不用提,同为深度学习三巨头之一的他现任 Facebook 人工智能研究院(FAIR)院长、纽约大学教授。作为卷积神经网络之父,他为深度学习的发展和创新作出了重要贡献。


ICLR 采用Open Review 评审制度。Open Review 则非常不同,根据规定,所有提交的论文都会公开姓名等信息,并且接受所有同行的评价及提问(open peer review),任何学者都可或匿名或实名地评价论文。而在公开评审结束后,论文作者也能够对论文进行调整和修改。目前 ICLR 的历届所有论文及评审讨论的内容,都完整地保存在 OpenReview.net 上,它也是 ICLR 的官方投稿入口。OpenReview.net 是马萨诸塞大学阿默斯特学院 Andrew McCallum 为 ICLR 2013 牵头创办的一个公开评审系统,秉承公开同行评审、公开发表、公开来源、公开讨论、公开引导、公开推荐、公开 API 及开源等八大原则,得到了 Facebook、Google、NSF 和马萨诸塞大学阿默斯特中心等机构的支持。


以下为论文列表

来源:https://openreview.net/group?id=ICLR.cc/2018/Conference

专知进行关键词统计信息如下:

可以看出 深度学习 神经网络 生成式对抗网络、强化学习、循环神经网络等等是投稿论文热点。


论文列表:

《Improving Discriminator-Generator Balance in Generative Adversarial Networks》:

  • 下载地址:https://openreview.net/pdf/b9ca5077f6a0c9481b172ad051d0bff48f2949c2.pdf

《Placeholder》:

  • 下载地址:https://openreview.net/pdf/a3ee124c0cc5f02acc976ae67f563ea632fbe23d.pdf

《Complex- and Real-Valued Neural Network Architectures》:

  • 关键词:complex numbers complex-valued neural network multi-layer perceptron architecture

  • 下载地址:https://openreview.net/pdf/4127a6a37a17384ef2d001931450550a33b69acd.pdf

《Revisiting Knowledge Base Embedding as Tensor Decomposition》:

  • 关键词:Knowledge base embedding

  • 下载地址:https://openreview.net/pdf/4e9e3d851b60e8aa75b53c344e0ed3988c5300fa.pdf

《Tree2Tree Learning with Memory Unit》:

  • 下载地址:https://openreview.net/pdf/9558215bb47a09abcef80ac65b52474a09da0be1.pdf

《Combining Model-based and Model-free RL via Multi-step Control Variates》:

  • 下载地址:https://openreview.net/pdf/c94761f85f8bdbd8b9c53261e25b4ec0258406e8.pdf

《Hyperedge2vec: Distributed Representations for Hyperedges》:

  • 关键词:hypergraph representation learning tensors

  • 下载地址:https://openreview.net/pdf/53c0248eb3e4d4fff5dd84d97ce5132f5d5861bf.pdf

《Deep Complex Networks》:

  • 关键词:deep learning complex-valued neural networks

  • 下载地址:https://openreview.net/pdf/21bc670e37fcb28f944d33f287f626306b316875.pdf

《OMIE: The Online Mutual Information Estimator》:

  • 关键词:Deep Learning Neural Networks Information Theory Generative models

  • 下载地址:https://openreview.net/pdf/0d736ada7e156b950fdd5eb287d9f95a22d9c54c.pdf

《Few-Shot Learning with Variational Homoencoders》:

  • 关键词:generative models one-shot learning metalearning pixelcnn hierarchical bayesian omniglot

  • 下载地址:https://openreview.net/pdf/36668c5f207557f4d40dcb81393774d2f0908266.pdf

《Video Action Segmentation with Hybrid Temporal Networks》:

  • 关键词:action segmentation video labeling temporal networks

  • 下载地址:https://openreview.net/pdf/9cb1db4642c01584e6ca3c886e730f3743542a24.pdf

《Learning Efficient Tensor Representations with Ring Structure Networks》:

  • 关键词:Tensor Decomposition Tensor Networks Stochastic Gradient Descent

  • 下载地址:https://openreview.net/pdf/a2f569c8fabb4aa65611d077829bfff2946df00d.pdf

《Fitting Data Noise in Variational Autoencoder》:

  • 关键词:variational autoencoder noise modelling representation learning generative model disentanglement

  • 下载地址:https://openreview.net/pdf/62a904438b7296e9a4a604381c06ee828574d98b.pdf

《Bayesian Uncertainty Estimation for Batch Normalized Deep Networks》:

  • 关键词:uncertainty estimation deep learning Bayesian learning batch normalization

  • 下载地址:https://openreview.net/pdf/ac74faafa0bba2c7808c4d9991b7b711ee064038.pdf

《A Goal-oriented Neural Conversation Model by Self-Play》:

  • 关键词:conversation model seq2seq self-play reinforcement learning

  • 下载地址:https://openreview.net/pdf/40fc8cdd76f4aba7cb8069509d9e5ddf2523ad35.pdf

《Automatic Goal Generation for Reinforcement Learning Agents》:

  • 关键词:Reinforcement Learning Multi-task Learning Curriculum Learning

  • 下载地址:https://openreview.net/pdf/7efb4d89e4f175f4cdecd4783b8b5a5d8af797cf.pdf

《A novel method to determine the number of latent dimensions with SVD》:

  • 关键词:SVD Latent Dimensions Dimension Reductions Machine Learning

  • 下载地址:https://openreview.net/pdf/5a5d920c9b7b9b39015b595683426873a38b3e8b.pdf

《Universal Agent for Disentangling Environments and Tasks》:

  • 关键词:reinforcement learning transfer learning

  • 下载地址:https://openreview.net/pdf/d18b693b43b8866425b41c5a3ae6e4de9b45658d.pdf

《Covariant Compositional Networks For Learning Graphs》:

  • 关键词:graph neural networks message passing label propagation equivariant representation

  • 下载地址:https://openreview.net/pdf/7673e6cf0b07d195633b82c9905e205759f686e9.pdf

《Deep learning mutation prediction enables early stage lung cancer detection in liquid biopsy》:

  • 关键词:somatic mutation variant calling cancer liquid biopsy early detection convolution deep learning machine learning lung cancer error suppression mutect

  • 下载地址:https://openreview.net/pdf/3da2a17bf6bec5ff1a8f0dd52c100ceb17694e76.pdf

《Learning To Generate Reviews and Discovering Sentiment》:

  • 关键词:unsupervised learning representation learning deep learning

  • 下载地址:https://openreview.net/pdf/82eaeeca82af695721cc73403066982e93ef60d2.pdf

《Noise-Based Regularizers for Recurrent Neural Networks》:

  • 下载地址:https://openreview.net/pdf/f5434c16d9149ba2ecf5dff8e5b5a34dce8e600b.pdf

《Prediction Under Uncertainty with Error Encoding Networks》:

  • 下载地址:https://openreview.net/pdf/bd3b0e1996f51903fe07077607eeae4c2b1bbafd.pdf

《Genative Entity Networks: Disentangling Entitites and Attributes in Visual Scenes using Partial Natural Language Descriptions》:

  • 关键词:VAE Generative Model Vision Natural Language

  • 下载地址:https://openreview.net/pdf/3cf45610469af5c3ecdef0638ed8c83937f59c27.pdf

《WSNet: Learning Compact and Efficient Networks with Weight Sampling》:

  • 关键词:Deep learning model compression

  • 下载地址:https://openreview.net/pdf/53e7e6f6b94dca95f61fbed0fcaf988215ad2083.pdf

《TD Learning with Constrained Gradients》:

  • 关键词:Reinforcement Learning TD Learning DQN

  • 下载地址:https://openreview.net/pdf/424ef3a312b7502cf11a36f4693095fb81db7ecb.pdf

《Improving the Improved Training of Wasserstein GANs》:

  • 关键词:GAN WGAN

  • 下载地址:https://openreview.net/pdf/98bba828944f13faf32019e9400c7ce9615e175e.pdf

《Exploring Representation Methods for Sequence Labeling》:

  • 下载地址:https://openreview.net/pdf/efa84800de59a703122ea1f328a6a3c1031e1cfa.pdf

《Fraternal Dropout》:

  • 关键词:fraternal dropout activity regularization recurrent neural networks RNN LSTM faster convergence

  • 下载地址:https://openreview.net/pdf/e58a67feb2152ae4cd53042cbb8762df63757b73.pdf

《What are image captions made of?》:

  • 关键词:image captioning representation learning interpretability rnn multimodal vision to language

  • 下载地址:https://openreview.net/pdf/0e647e0120fb1714b378c172dbf1934d6c901237.pdf

《Sequential Coordination of Deep Models for Learning Visual Arithmetic》:

  • 关键词:reinforcement learning pretrained deep learning perception algorithmic

  • 下载地址:https://openreview.net/pdf/3aabac9a13b73eaca48e53acec3f071ba9fb96b9.pdf

《DETECTING ADVERSARIAL PERTURBATIONS WITH SALIENCY》:

  • 关键词:Adversarial Examples Detection Saliency Model Interpretation

  • 下载地址:https://openreview.net/pdf/b7aafb6a6dbb956dea1e53cf9f4a58ec39e9513b.pdf

《An inference-based policy gradient method for learning options》:

  • 关键词:reinforcement learning hierarchy options inference

  • 下载地址:https://openreview.net/pdf/7ff2f7d7dba366ae35b85d4dbac7d2a46c59007e.pdf

《Generative Entity Networks: Disentangling Entities and Attributes in Visual Scenes using Partial Natural Language Descriptions》:

  • 关键词:VAE Vision Natural Language

  • 下载地址:https://openreview.net/pdf/bfd58631af339d8043d30210ba8c2ad9d965cc3e.pdf

《Don’t encrypt the data; just approximate the model \ Towards Secure Transaction and Fair Pricing of Training Data》:

  • 关键词:Applications Security in Machine Learning Fairness and Security Model Compression

  • 下载地址:https://openreview.net/pdf/69170f53ffe9f431f2c54cd1a453add292d356cb.pdf

《Alpha-divergence bridges maximum likelihood and reinforcement learning in neural sequence generation》:

  • 关键词:neural network reinforcement learning natural language processing machine translation alpha-divergence

  • 下载地址:https://openreview.net/pdf/4122d80b6740caf9641d8bbc9dc1cf00e2259f51.pdf

《3C-GAN: AN CONDITION-CONTEXT-COMPOSITE GENERATIVE ADVERSARIAL NETWORKS FOR GENERATING IMAGES SEPARATELY》:

  • 下载地址:https://openreview.net/pdf/554e41c5738f9a1f35ea2eae5a31bebad2354fe6.pdf

《Parametric Information Bottleneck to \Optimize Stochastic Neural Networks》:

  • 关键词:Information Bottleneck Deep Neural Networks

  • 下载地址:https://openreview.net/pdf/db367bd113d779803710f2c0b70e6a13fa0e508d.pdf

《Towards a Testable Notion of Generalization for Generative Adversarial Networks》:

  • 关键词:generative adversarial networks Wasserstein GAN generalization theory

  • 下载地址:https://openreview.net/pdf/c8e2421cd23954c4dc741562cc8192c356fd3068.pdf

《TOWARDS ROBOT VISION MODULE DEVELOPMENT WITH EXPERIENTIAL ROBOT LEARNING》:

  • 关键词:Deep Learning Robotics Artificial Intelligence Computer Vision

  • 下载地址:https://openreview.net/pdf/00e5c4aefc80d0396ee745c032d27e0bccb43079.pdf

《Variational Bi-LSTMs》:

  • 下载地址:https://openreview.net/pdf/4324fa39868648281fcca9536b21bab92f264995.pdf

《Learning an Embedding Space for Transferable Robot Skills》:

  • 关键词:Deep Reinforcement Learning Variational Inference Control Robotics

  • 下载地址:https://openreview.net/pdf/91cf23f41853ce25a71700dc007240032056772d.pdf

《ON MODELING HIERARCHICAL DATA VIA ENCAPSULATION OF PROBABILITY DENSITIES》:

  • 关键词:embeddings

  • 下载地址:https://openreview.net/pdf/a09f1ca6968a32ebc27f80d50c9cf7afcdeaaca5.pdf

《withdraw》:

  • 下载地址:https://openreview.net/pdf/210160b60e7b9c27d7075e84fb18ad70b9641847.pdf

《Neural Compositional Denotational Semantics for Question Answering》:

  • 关键词:question answering knowledge graph compositional model semantics

  • 下载地址:https://openreview.net/pdf/576e30e63197e5c48e28f9a662cf7d1f7e0a7424.pdf

《Model compression via distillation and quantization》:

  • 下载地址:https://openreview.net/pdf/6a770d7c95ac938be4c78c7d38abb92a01749769.pdf

《Binarized Back-Propagation: Training Binarized Neural Networks with Binarized Gradients》:

  • 关键词:Neural Network acceleration Low Precision neural networks.

  • 下载地址:https://openreview.net/pdf/8c46133b2c265d251eb6b79476877fd072e2445e.pdf

《DON’T ENCRYPT THE DATA, JUST APPROXIMATE THE MODEL/ TOWARDS SECURE TRANSACTION AND FAIR PRICING OF TRAINING DATA》:

  • 关键词:Security in Machine Learning Information Security Fairness and Privacy

  • 下载地址:https://openreview.net/pdf/6b168938dbf6014d12195848c4dc000920a179b3.pdf

《Optimal transport maps for distribution preserving operations on latent spaces of Generative Models》:

  • 关键词:GANs transport

  • 下载地址:https://openreview.net/pdf/b7c56e1cd66dbf15ef3b4bc4d2aa145c07b24d94.pdf

《Learning Representations for Faster Similarity Search》:

  • 下载地址:https://openreview.net/pdf/6c1f3ff600aabd6e41f45bbef2b086a6595aea5a.pdf

《Maximum a Posteriori Policy Optimisation》:

  • 关键词:Reinforcement Learning Variational Inference Control







请到「今天看啥」查看全文