基于可调二极管激光吸收光谱(TDLAS)技术的激光光谱气体分析系统已经迅速应用到对于灵敏度、响应时间、背景气体免干扰等有较高要求的各种气体监测领域。TDLAS的技术优势在于实现了实时的原地测量,避免了气体抽样测量带来的一些问题,特别适用于众多工业领域气体排放监测和过程控制,燃煤发电厂、铝厂、钢铁厂、冶炼厂、核电站、垃圾发电站、水泥厂和化工厂等等行业的气体监测应用。
过去由燃烧排放气体引起的温室气体已成为最被关注的环境问题,矿物燃料燃烧排放的氮氧化物(NOX)已经成为大气中氮氧化物污染物的主要来源。由于NOX会引起地面臭氧和酸雨的形成,因此其排放已经开始被加以控制。后燃NOX控制技术的基本原理是通过注入氨与氮氧化物发生反应生成N2和水。但是过量的注入氨并不能进一步降低NOX排放浓度,相反会导致过量的氨气逃逸出反应区,逃逸的氨气会与工艺生产流程中硫酸盐发生反应生成硫酸铵,铵盐沉淀附着在下游设备的表面,造成了设备腐蚀,使得维护费用和工作量显著增加。为使氨逃逸量维持在一个最低水平线上,须做到以下两点:一是要对氨注入的工艺程序进行良好的控制,二是要做到在反应区下游精确地、迅速地、连续地监测到氨逃逸量。连续、实时的对氨逃逸量进行监测可以瞬间为氨注入系统提供一个反馈,以此优化氨注入系统的运行。有过氧气顶吹转炉(basic oxygen furnaces ,BOF)的烟气监测应用。
BOF是钢铁厂最主要的设备之一,被广泛用做把富碳的生铁冶炼成钢。钢中含碳量越高,硬度越大,但是也更加易碎且缺乏韧性。通过往熔融的生铁里面鼓入氧气,以此来降低钢铁的碳含量,冶炼出低碳钢,并且通过更多深处理使这种钢材适合诸如汽车制造以及其他的对低碳钢有需求的应用。过量向熔融的生铁鼓入氧气去把含碳量降的更低是没有必要的,这样做反而恶化了钢铁的品质。因此,快速、实时地对转炉尾气进行监测是非常重要的,它能直接或间接地确定喷氧截止时间。
电解铝厂的HF气体监测。铝在熔炼的过程中,HF气体也随之产生并被排放,为了避免HF气体泄漏在工作区域,电解槽都有专用的槽板罩住,产生的HF气体被捕获收集,经过净化系统处理后再排放。HF气体具有剧毒,对电解槽车间工人的身体健康和周边的环境都有很大的伤害和影响,另外,铝厂对氟化物回收可以节约能源,增加经济效益。可调谐二极管激光技术目前已经在世界各地的几百个电解铝厂做为净化系统的控制设备得以应用。
可调谐激光器的分析仪、发射激光光束并穿过被测介质的光学发射端、安装在被测介质另一端接收透射光的接收端。分析控制器(分析仪)自身可以安置在远离现场监测点1km之外的控制室内,现场光学传感系统与分析控制器之间通过光纤和同轴电缆连接,测量的数据被保存在系统的分析控制器内的闪存卡或外部电脑上,外部电脑通过以太网网口与分析控制器连接,数据信息也可以传送到企业的数据库。
使用TDLAS技术测量的气体浓度实际上是光束在穿过的区域上测得的平均浓度,LasIRTM系统的原地测量远远优于使用采样探头在烟道/管道一个点上抽取测量的方式,尤其是在气体浓度呈梯度性变化或非均匀分布存在时,通过原地测量光径上的气体浓度平均值则更好的代表了过程气体的一个整体浓度值。
在分析控制器内部,光纤耦合激光器通过光多路器可以实现气体的多点监测, LasIRTM系统能够做到使用单台分析控制器同时做1~16个不同点的同步监测,另外,在激光器可调谐范围之内,当不同的气体吸收谱线非常接近时,一台分析控制器也可以对多种气体进行同时监测。无电源要求的光学传感单元能非常容易的满足有防爆要求的检测场合(可以配置发射端和接受端都使用光纤传输)。