-
[1804.07573]MobileFaceNets: Efficient CNNs for Accurate Real-time Face Verification on Mobile Devices
简评:本文展示了一种非常高效的CNN模型,叫做MobileFaceNets,它使用不超过100万个参数,专门为在移动设备和嵌入式设备上的高精度实时人脸验证而量身定做。还对常见移动网络的弱点进行了简单的分析。作者特别设计的MobileFaceNets已经克服了这个弱点。在相同的实验条件下,MobileFaceNets的准确性更高,而且比MobileNetV2的实际加速要高出2倍。在经过了改进后,我们的单移动facenet模型的0。4 MB的大小,达到了99。55%的人脸验证精度,在MegaFace挑战1上达到了92.59%(FAR1e-6),这甚至可以与最先进的CNN模型的数百MB大小相媲美。我们的MobileFaceNets中最快的一个在移动电话上有18毫秒的实际推理时间。
-
[1711.05408] RNN作为识别器,判定加权语言一致性
简评:该论文探索了识别加权语言的RNN形式模型的计算复杂度。研究表明,大多数类似的RNN中存在的问题都是不可判定的,包括:一致性、等价性、最小化和最高权重字符串的确定。然而,对于连续一致的RNN来说,最后一个问题是可判定的。
-
[1804.09882] A Neural Embeddings Approach for Detecting Mobile Counterfeit Apps
简评:本文提出了利用先进的神经嵌入生成卷积神经网络(cnn)来衡量图像之间的相似性。结果表明,在伪检测问题上,采用了一种新颖的方法,采用了由CNN过滤网的克氏矩阵给出的样式嵌入方法,比内容嵌入和筛选功能等基线方法更有效。我们发现,通过将样式嵌入与内容嵌入相结合,可以实现进一步的性能提升。
-
[1804.07090]Low Rank Structure of Learned Representations
简评:本文通过对图像分类的模型进行了研究,并对其进行了研究,并对其进行了研究。我们关注的是ResNet-18、ResNet-50和VGG-19,并观察到当在CIFAR10或CIFAR100数据集上进行训练时,学习的表示表现出相当低的等级结构。我们建议对训练程序进行修改,进一步鼓励在神经网络的不同阶段对激活的低等级表示。从经验上来说,我们证明这对对抗的例子有一定的压缩和健壮性。
-
[1804.09060] An Information-Theoretic View for Deep Learning
简评:深度学习的信息论观点——卷积层和池化层是收缩函数,会导致信息损失;由于深度网络增加这些层,输入和输出间的互信息指数级减小,泛化误差也会指数级减小。
-
[1804.05806]Deep Embedding Kernel
简评:在本文中,我们提出了一种新的监督学习方法,称为深埋核(DEK)。德克将深度学习和内核方法的优势结合在一个统一的框架中。更具体地说,德克是一个可学习的内核,它由一个新设计的深层架构所代表。与预先定义的内核相比,这个内核可以被显式地训练成将数据映射到一个优化的高级特性空间,其中数据可能对应用程序有良好的特性。
-
[1804.06913] Fast inference of deep neural networks in FPGAs for particle physics
简评:本文通过对图像分类的模型进行了研究。关注的是ResNet-18、ResNet-50和VGG-19,并观察到当在CIFAR10或CIFAR100数据集上进行训练时,学习的表示表现出相当低的等级结构。我们建议对训练程序进行修改,进一步鼓励在神经网络的不同阶段对激活的低等级表示。从经验上来说,作者证明这对对抗的例子有一定的压缩和健壮性。