专栏名称: R语言与水文生态环境
本账号依托水文生态研究中心,分享水文地质、环境科学相关文献情报;科普环境、地学知识!
目录
相关文章推荐
游戏研究社  ·  还有人能拯救式微的RTS游戏吗? ·  2 天前  
字体设计  ·  今年的作品集离不开这个设计技能 ·  3 天前  
庞门正道  ·  首次,探访花了319亿元的企鹅岛。 ·  3 天前  
51好读  ›  专栏  ›  R语言与水文生态环境

【文献情报】| J HYDROL-REG STUD |21世纪中国祁连山地区气候变暖背景下的降水相态变化!

R语言与水文生态环境  · 公众号  ·  · 2025-01-07 00:02

正文

点击蓝色字体 关注我们

(一)基本信息

  • 期刊: Journal of Hydrology-Regional Studies

  • 中科院分区: 2区 地球科学

  • 影响因子(IF):4.7

(二)作者信息
  • 第一作者:Mingyu Dou

  • 通讯作者:Mingyu Dou and Keqin Duan

  • 第一作者单位:School of Geography and Tourism, Shaanxi Normal University, Xi′an 710119, China

  • 原位连接:https://doi.org/10.1016/j.ejrh.2024.102151

(三)文章亮点
  • (1)降雨量增加,而降雪量减少,表明从降雪到降雨的转化显著;

  • (2)1961 - 2020年降雪量占降水量的比例减少了5.4 %;
  • (3)在SSP2 - 4.5情景下,与2001 - 2020年相比,LPSD在2081 - 2100年下降约35天;
  • (4)在SSP5 - 8.5情景下,到本世纪中叶,夏季将无降雪。
(四)摘要

研究区域:祁连山( Qlm )

中国研究重点:山区降水相态变化对冰川表面物质平衡、季节性河川径流和地表反照率有重要影响。然而,目前尚不清楚在全球变暖背景下,这些变化在祁连山地区是如何表现的。本文基于ERA5 - Land数据,分析了1961 - 2020年降水和降雪的变化特征,并利用耦合模式比较计划第6阶段的模拟结果预估了2021 - 2100年的潜在降雪日数( LPSD )。

为该地区提供新的水文见解:结果表明:年平均气温以0.25℃/ 10a的速率上升,导致年降水量和年降雪量分别以5.61和- 1.89 mm / 10a的速率增加和减少。而在SSP2 - 4.5和SSP5 - 8.5情景下,2020 ~ 2100年的升温更快,分别为0.28 [ 0.12 ~ 0.45 ]和0.82 [ 0.45 ~ 1.20 ]℃/ 10a。LPSD将以3.00 [ 4.54-1.44 ] d / 10a和8.84 [ 13.02-4.66 ] d / 10a的速率急剧缩短,导致21世纪末LPSD相对于2001 - 2020年分别近似减少35 [ 12.44-56.60 ] d和74 [ 34.19-113.96 ] d。值得注意的是,1961 - 2020年夏季降雪以- 1.95 mm / 10a的速率显著减少,而降雨量以8.33 mm / 10a的速率增加,超过4000 mm / 10a。在SSP5 - 8.5情景下,到本世纪中叶,LPSD在夏季将不存在,这意味着降雪将完全转为降水。这种潜在的"雪-雨"转换将对秦巴山区下游绿洲水资源的可持续利用构成严重威胁。

(五)图文赏析

Fig. 1. Sketch map of the Qilian Mountains, China. The black line represents basins; red points represent the meteorological stations; the dark blue plane represents the glacier; the light blue plane represents the lake; the gray line represents the boundary of the eastern, central and western parts.

Fig. 2. Characterization of precipitation phase frequency distribution at different temperatures in the Qilian Mountains. Blue represents the snow frequency; green represents the rain; pink represents the sleet.

Fig. 3. Spatial pattern of ERA5-Land temperature(a) and precipitation(b) correlations compared with CRU over the Qilian Mountains (1961 2020). The pie charts depict the distribution of correlations. Spatial Taylor diagram (c, d) and temporal three phase diagram(e) between individual models from CMIP6 compared with CRU over the Qilian Mountains (1961 2014). Upper case letters (yellow) represent primordial models and lower (blue) represent corrected models, see Table 1 for details. REF represents the CRU data, red represents the best ensemble mean. Interannual variations of the snowfall over the Qilian Mountains from 1961 to 1979 based on meteorological stations and ERA5-Land (f-m).

Fig. 4. Time series of temperature, precipitation, rainfall, and snowfall changes in (a-d) year, (e-h) spring (March-May; MAM), (i-l) summer (July August; JJA), (m-p) autumn (September-November; SON), and (q-t) winter (December-February; DJF) during 1961 2020 in the Qilian Mountains. Red lines are the trends of temperature, precipitation, rainfall, and snowfall.

Fig. 5. Spatial distribution of temperature, precipitation, rainfall, and snowfall in (a-d) year, (e-h) spring (March-May; MAM), (i-l) summer (July August; JJA), (m-p) autumn (September-November; SON), and (q-t) winter (December-February; DJF) over the Qilian Mountains from 1961 to 2020.

Fig. 6. Spatial distribution of temperature, precipitation, rainfall, and snowfall change rates in (a-d) year, (e-h) spring (March-May; MAM), (i-l) summer (July-August; JJA), (m-p) autumn (September-November; SON), and (q-t) winter (December-February; DJF) over the Qilian Mountains from 1961 to 2020.

Fig. 7. Rainfall and snowfall and their change rates vary with elevation in (a, b) year, (c, d) spring (March-May; MAM), (e, f) summer (July-August; JJA), (g, h) autumn (September-November; SON), and (i, j) winter (December-February; DJF) over the Qilian Mountains from 1961 to 2020. Bow whisker plots show the 10th, 25th, 50th, 75th, and 90th percentiles of snowfall(A), snowfall trend(B), rainfall(C), and rainfall trend(D) during different elevations.

Fig. 8. The temporal variations of the annual LPSD and the summer LPSD (a), the annual and summer mean temperature (b), the intra-annual amplitude of daily temperature variation and monthly LPSD diversity(c), as well as the LPSD, vary with elevation(d) over the Qilian Mountains under four Shared Socioeconomic Pathway (SSP) scenarios during 1961 2100. ERA5-Land (dark blue), Historical (black), SSP1 2.6 (blue), SSP2 4.5 (yellow), SSP3 7.0 (red), and SSP5 8.5 (dark red) simulations by the multi-model ensemble mean of the two best models (BMME). Bow-whisker plots show the 10th, 25th, 50th, 75th, and 90th percentiles.

Fig. 9. The spatial variation of the LPSD over the Qilian Mountains during 1961 2100. The LPSD in 1961 1980(a) and 2001 2020(b) based on ERA5-Land. The LPSD in 2041 2060 and 2081 2100 based on CMIP6 under SSP1 2.6(d, e), SSP2 4.5(g, h), SSP3 7.0(j, k), and SSP5 8.5(m, n), respectively. The trends of LPSD during 1961 2020(c), and 2021 2100 under SSP1 2.6(f), SSP2 4.5(i), SSP3 7.0(l), and SSP5






请到「今天看啥」查看全文