固态电池可分为聚合物、氧化物、硫化物三种体系,我们测算固态电池 2030
年量产将降本 29%,且低于当前液态电池。氧化物综合性能好,体系制备难度适中,但电导率较低;硫化物是理论上最佳的固态电解质材料;聚合物固态电解质技术最成熟。正极材料方面,层状氧化物结构当前使用最为广泛,已代替稳定性差的尖晶石结构,富鲤锰正极材料是未来的理想选择。负极材料方面,硅基材料具备超高理论容量、原料丰富,是目前各大厂商重点研究对象,鲤金属负极材料有望成为全固态电池的负极材料。我们测算固态电池 2030 年量产后将降本 29%,且成本有望低于当前液态电池。
固态电池发展历程
半固态到全固态产业化趋势
根据电解质材料的不同,固态电池可分为聚合物、氧化物、硫化物三种体系。固态电池技术早期研究以聚合物电解质为主,因此聚合物体系工艺最为成熟。但随着聚合物电解质性能达到上限难以突破,固态电池技术研究逐渐过渡到以氧化物系和硫化物系为主。氧化物体系分为薄膜和非薄膜类,前者开发重点在于容量的扩充与规模化生产,后者综合性能较好,是当前研发的重点方向:硫化物体系处于发展空间巨大与技术水平不成熟的两极化局面,巫需解决安全性等问题。
-
氧化物综合性能好,体系制备难度适中,但电导率较低。氧化物具有较好的导电性和稳定性,热稳定性高达 1000°C,同时机械稳定性与电化学稳定性都较好。
-
硫化物固态电解质是理论上最佳的固态电解质材料。硫化物固态电解质的电导率最高,并且电化学稳定窗口较宽,可以在 5V 以上,且兼具强度和加工性能、界面相容性好,是理论上最佳的固态电解质材料。
-
聚合物固态电解质当前技术最成熟、最早实现实际应用。
国内目前有多家厂商涉足固态电解质的生产领域,多数厂商专注于氧化物和硫化物路线。
【免责声明】 文章为作者独立观点,不代表"新能源时代"公众号立场。如因作品内容、版权等存在问题,请于本文刊发7日内联系"新能源时代"公众号进行删除或洽谈版权使用事宜。