高等教育出版社学术出版官微。在这里您可以掌握最新的学术、书籍资讯,了解我们最新的产品与服务,也可以通过与小编的交流,帮您完成图书出版、期刊发文(Frontiers英文期刊)和申报立项等工作。 |
01
Review Article
Cryogenic minimum quantity
l
ubrication
machining:
from mechanism
to application
https://doi.org/10.1007/s11465-021-0654-2
Cutting fluid plays a cooling–lubrication role in the cutting of metal materials. However, the substantial usage of cutting fluid in traditional flood machining seriously pollutes the environment and threatens the health of workers. Environmental machining technologies, such as dry cutting, minimum quantity lubrication (MQL), and cryogenic cooling technology, have been used as substitute for flood machining. However, the insufficient cooling capacity of MQL with normal-temperature compressed gas and the lack of lubricating performance of cryogenic cooling technology limit their industrial application. The technical bottleneck of mechanical–thermal damage of difficult-to-cut materials in aerospace and other fields can be solved by combining cryogenic medium and MQL. The latest progress of cryogenic minimum quantity lubrication (CMQL) technology is reviewed in this paper, and the key scientific issues in the research achievements of CMQL are clarified. First, the application forms and process characteristics of CMQL devices in turning, milling, and grinding are systematically summarized from traditional settings to innovative design. Second, the cooling–lubrication mechanism of CMQL and its influence mechanism on material hardness, cutting force, tool wear, and workpiece surface quality in cutting are extensively revealed. The effects of CMQL are systematically analyzed based on its mechanism and application form. Results show that the application effect of CMQL is better than that of cryogenic technology or MQL alone. Finally, the prospect, which provides basis and support for engineering application and development of CMQL technology, is introduced considering the limitations of CMQL.
https://journal.hep.com.cn/fme/EN/10.1007/s11465-021-0654-2
02
Research Article
1. Development of a redundant anthropomorphic hydraulically actuated manipulator with a roll–pitch–yaw spherical wrist
Min CHENG, Zenan HAN, Ruqi DING, Junhui ZHANG, Bing XU. Development of a redundant anthropomorphic hydraulically actuated manipulator with a roll–pitch–yaw spherical wrist. Front. Mech. Eng., 2021, 16(4): 698‒710
https://doi.org/10.1007/s11465-021-0646-2
The demand for redundant hydraulic manipulators that can implement complex heavy-duty tasks in unstructured areas is increasing; however, current manipulator layouts that remarkably differ from human arms make intuitive kinematic operation challenging to achieve. This study proposes a seven-degree-of-freedom (7-DOF) redundant anthropomorphic hydraulically actuated manipulator with a novel roll–pitch–yaw spherical wrist. A hybrid series–parallel mechanism is presented to achieve the spherical wrist design, which consists of two parallel linear hydraulic cylinders to drive the yaw/pitch 2-DOF wrist plate connected serially to the roll structure. Designed as a 1R PRRR-1S PU mechanism (“R”, “P”, “S”, and “U” denote revolute, prismatic, spherical, and universal joints, respectively; the underlined letter indicates the activ e joint), the 2-DOF parallel structure is partially decoupled to obtain simple forward/inverse kinematic solutions in which a closed-loop subchain “R PRR” is included. The 7-DOF manipulator is then designed, and its third joint axis goes through the spherical center to obtain closed-form inverse kinematic computation. The analytical inverse kinematic solution is drawn by constructing self-motion manifolds. Finally, a physical prototype is developed, and the kinematic analysis is validated via numerical simulation and test results.
文章链接:
2. Mechanical design and analysis of a novel variable stiffness actuator with symmetrical pivot adjustment
文章摘要:
The safety of human–robot interaction is an essential requirement for designing collaborative robotics. Thus, this paper aims to design a novel variable stiffness actuator (VSA) that can provide safer physical human–robot interaction for collaborative robotics. VSA follows the idea of modular design, mainly including a variable stiffness module and a drive module. The variable stiffness module transmits the motion from the drive module in a roundabout manner, making the modularization of VSA possible. As the key component of the variable stiffness module, a stiffness adjustment mechanism with a symmetrical structure is applied to change the positions of a pair of pivots in two levers linearly and simultaneously, which can eliminate the additional bending moment caused by the asymmetric structure. The design of the double-deck grooves in the lever allows the pivot to move freely in the groove, avoiding the geometric constraint between the parts. Consequently, the VSA stiffness can change from zero to infinity as the pivot moves from one end of the groove to the other. To facilitate building a manipulator in the future, an expandable electrical system with a distributed structure is also proposed. Stiffness calibration and control experiments are performed to evaluate the physical performance of the designed VSA. Experiment results show that the VSA stiffness is close to the theoretical design stiffness. Furthermore, the VSA with a proportional–derivative feedback plus feedforward controller exhibits a fast response for stiffness regulation and a good performance for position tracking.
文章链接:
3. Optimum design and preliminary experiments of a novel parallel end traction apparatus for upper-limb rehabilitation
Shiping ZUO, Jianfeng LI, Mingjie DONG, Guotong LI, Yu ZHOU. Optimum design and preliminary experiments of a novel parallel end traction apparatus for upper-limb rehabilitation. Front. Mech. Eng., 2021, 16(4): 726‒746
https://doi.org/ 10.1007/s11465-021-0651-5
https://journal.hep.com.cn/fme/EN/10.1007/s11465-021-0651-5
Majun SONG, Sheng GUO, Anderson S. OLIVEIRA, Xiangyang WANG, Haibo QU. Design method and verification of a hybrid prosthetic mechanism with energy-damper clutchable device for transfemoral amputees. Front. Mech. Eng., 2021, 16(4): 747‒764
Transfemoral amputees (TAs) have difficulty in mobility during walking, such as restricted movement of lower extremity and body instability, yet few transfemoral prostheses have explored human-like multiple motion characteristics by simple structures to fit the kinesiology, biomechanics, and stability of human lower extremity. In this work, the configurations of transfemoral prosthetic mechanism are synthesized in terms of human lower-extremity kinesiology. A hybrid transfemoral prosthetic (HTP) mechanism with multigait functions is proposed to recover the gait functions of TAs. The kinematic and mechanical performances of the designed parallel mechanism are analyzed to verify their feasibility in transfemoral prosthetic mechanism. Inspired by motion–energy coupling relationship of the knee, a wearable energy-damper clutched device that can provide energy in knee stance flexion to facilitate the leg off from the ground and can impede the leg’s swing velocity for the next stance phase is proposed. Its co-operation with the springs in the prismatic pairs enables the prosthetic mechanism to have the energy recycling ability under the gait rhythm of the knee joint. Results demonstrate that the designed HTP mechanism can replace the motion functions of the knee and ankle to realize its multimode gait and effectively decrease the peak power of actuators from 94.74 to 137.05 W while maintaining a good mechanical adaptive stability.
https://journal.hep.com.cn/fme/EN/10.1007/s11465-021-0644-4
Lin WANG, Yuefa FANG, Luquan LI. Design and analysis of the gripper mechanism based on generalized parallel mechanisms with configurable moving platform. Front. Mech. Eng., 2021, 16(4): 765‒781
https://doi.org/10.1007/s11465-021-0655-1
Generalized parallel mechanisms with a configurable moving platform have become popular in the research field of parallel mechanism. This type of gripper mechanism can be applied to grasp large or heavy objects in different environments that are dangerous and complex for humans. This study proposes a family of novel (5 + 1) degrees of freedom (three translations and two rotations plus an additional grasping motion) gripper mechanisms based on the generalized parallel mechanisms with a configurable moving platform. First, the configurable moving platform, which is a closed loop, is designed for grasping manipulation. The hybrid topological arrangement is determined to improve the stiffness of the manipulator and realize high load-to-weight ratios. A sufficient rule based on Lie group theory is proposed to synthesize the mechanism. The hybrid limb structure is also enumerated. A family of novel gripper mechanisms can be assembled through the hybrid limbs by satisfying the rule. Two examples of the gripper mechanisms with and without parallelogram pairs are shown in this study. A kinematic analysis of the example mechanism is presented. The workspace shows that the mechanism possesses high rotational capability. In addition, a stiffness analysis is performed.
https://journal.hep.com.cn/fme/EN/10.1007/s11465-021-0655-1
Yingjun WANG, Liang GAO, Jinping QU, Zhaohui XIA, Xiaowei DENG. Isogeometric analysis based on geometric reconstruction models. Front. Mech. Eng., 2021, 16(4): 782‒797
https://doi.org/10.1007/s11465-021-0648-0
In isogeometric analysis (IGA), the boundary representation of computer-aided design (CAD) and the tensor-product non-uniform rational B-spline structure make the analysis of three-dimensional (3D) problems with irregular geometries difficult. In this paper, an IGA method for complex models is presented by reconstructing analysis-suitable models. The CAD model is represented by boundary polygons or point cloud and is embedded into a regular background grid, and a model reconstruction method is proposed to obtain the level set function of the approximate model, which can be directly used in IGA. Three 3D examples are used to test the proposed method, and the results demonstrate that the proposed method can deal with complex engineering parts reconstructed by boundary polygons or point clouds.
https://journal.hep.com.cn/fme/EN/10.1007/s11465-021-0648-0
7 . Group-based multiple pipe routing method for aero-engine focusing on parallel layout
文章引用:
文章摘要:
文章链接:
8 . Deep convolutional tree-inspired network: a decision-tree-structured neural network for hierarchical fault diagnosis of bearings
文章引用:
文章摘要:
文章链接:
9 . Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
文章引用:
文章摘要:
文章链接:
10 . Fractal characteristic evaluation and interpolation reconstruction for surface topography of drilled composite hole wall
文章引用:
文章摘要:
文章链接:
11 . Position-varying surface roughness prediction method considering compensated acceleration in milling of thin-walled workpiece
文章引用:
文章摘要:
文章链接:
12 . An energy consumption prediction approach of die casting machines driven by product parameters
文章引用:
文章摘要:
文章链接:
13 . Coordinated shift control of nonsynchronizer transmission for electric vehicles based on dynamic tooth alignment
文章引用:
文章摘要:
文章链接:
《前沿》系列英文学术期刊
由教育部主管、高等教育出版社主办的《前沿》(Frontiers)系列英文学术期刊,于2006年正式创刊,以网络版和印刷版向全球发行。系列期刊包括基础科学、生命科学、工程技术和人文社会科学四个主题,是我国覆盖学科最广泛的英文学术期刊群,其中13种被SCI收录,其他也被A&HCI、Ei、MEDLINE或相应学科国际权威检索系统收录,具有一定的国际学术影响力。系列期刊采用在线优先出版方式,保证文章以最快速度发表。
|
《前沿》系列英文学术期刊 中国学术前沿期刊网 http://journal.hep.com.cn/ |
|
ONE一个 · 男朋友背着我偷吃,我一怒之下做了这样的事情... 8 年前 |
|
新街派 生活报 · 雨夹雪+大降温+2个区大停电!哈尔滨人挺住,咱还有个好消息 8 年前 |
|
冷漫画 · 你爱的人和爱你的人,你会如何选择? 8 年前 |
|
那一座城 · 尼泊尔丨大多数人的珠峰梦,都踩在他们的血肉之躯上。 8 年前 |
|
新华网 · 我爱你,香港! 7 年前 |