正文
文/中国银行总行网络金融部总经理、中国互联网金融协会金融科技发展与研究工作组副组长
郭为民
大数据有利于驱动银行业的数字化转型,解决部分黑色产业漏洞及安全威胁。但中国银行业在大数据使用方面依然面临挑战。本文认为,中国银行业应利用大数据技术建立客户全生命周期管理、利用大数据风控实现智能化转型、同时应跨界合作打造金融数据生态圈,并强化安全管控,建立健全客户信息安全机制。中国银行业须构建政产学研用为一体的开放、共享、互利、共赢的大数据产业生态体系。
大数据、人工智能、区块链、云计算、物联网、移动支付等新兴技术蓬勃发展并不断加速向社会生活的各领域渗透融合,对经济发展和社会进步产生了深刻影响,金融业的产品服务、运营管理和客户体验也在技术的驱动下加速了创新变革的步伐。大数据是重要的生产资料,是人工智能大脑流动的血液,作为国家“互联网+”行动的重要战略资源,对金融机构智能转型化发展的驱动作用愈发凸显,成为构建银行未来核心竞争力的关键。
目前,良好的政策环境也推动中国大数据产业快速发展。为了鼓励包括大数据在内的新兴技术发展,中国监管机构与时俱进地制定和出台了系列政策,有力地保障和促进了行业的整体稳健发展。《国务院关于积极推进“互联网+”行动的指导意见》明确要求鼓励金融机构使用互联网拓宽服务覆盖面,使用云计算、移动互联网、大数据等技术手段来加快金融产品和服务创新,在更广泛地区提供便利的存贷款、支付结算、信用中介平台等金融服务。《中国银行业信息科技“十三五”发展规划监管指导意见(征求意见稿)》也明确要求要构建数据共享机制,逐步实现内外部数据的融合;统筹规划大数据基础设施,推进大数据平台建设;建立大数据服务体系,扩大数据服务的用户覆盖面;积极扩大信息来源以奠定大数据应用基础;开展大数据营销,提高获客能力和客户黏性;加强大数据风控,全面了解运营情况并及时优化业务流程,以推动业务创新;拓宽普惠金融的服务范围为实体经济发展提供支撑。
大数据、人工智能等技术的发展正处于由量变到质变,从概念到应用的阶段,在新一轮技术革命、产业升级和经济转型的历史交会点上,抓住了就是机遇,错过了就是挑战。一个银行能否百年长青,核心在于理解和拥抱新技术,以创新推动转型发展。大数据作为银行业的核心资产,“用数据驱动转型发展”已经成为大家的共识。商业银行拥有大量的金融交易数据,具备成为数字化转型的先天优势。过去海量的结构化数据相互割裂、静止,沉睡在数据库中。随着新技术的快速进步,金融行业的数据应用开始流动融合,变得活跃而有生命力。大数据已经成为银行业创新的一把利器,具备大数据驾驭能力的金融机构可以实现基于数据驱动的管理决策、服务运营、风险管理及产品创新等的智能化转型与变革。
同时,对于占国家金融命脉主体地位的商业银行,以至于整个金融体系而言,大数据可以解决部分黑色产业漏洞及安全威胁。互联网金融蓬勃发展的同时也面临着更加严峻的安全考验。首先,传统黑客变种升级,钓鱼网站、木马僵尸、撞库攻击、安全漏洞等愈发肆虐,黑产技术的先进性、复杂性、隐蔽性和持续性都远远超出了传统网络安全技术的应对与防护能力范围,不断侵蚀金融生态安全,犹如溃堤的蚁穴,若无数个不受控制的单个风险点最终全面开花将会带来巨大的损失。其次,新技术、新架构的应用引入新的安全风险与威胁。再次,互联网环境下的信息泄漏和信息滥用等问题愈发严峻,银行业如何在开放合作中有效保护客户隐私与信息安全任重道远。所谓道魔互博,借助大数据技术可以解决创新阶段的黑产漏洞及安全威胁带来的制约。比如基于海量的计算和存储能力打破信息孤岛,持续丰富信息数据维度,完善治理数据质量的同时可实现威胁情报与信息共享。再比如,借助大数据技术并结合机器学习及人工智能,可以有效加强网络安全威胁的态势感知、预警与分析,提升金融网络安全防御的广度与深度,前瞻性地了解对手,提前感知并精准定位风险,并采取有效的风险应对措施为业务的稳健发展和银行的智能转型保驾护航。
传统商业银行是最先使用信息技术也是信息技术使用最广泛的行业之一。银行对客户、账户信息的存储和使用都有健全的管理机制。但是与新兴的互联网企业相比,由于起点不同,银行的数据管理能力存在明显差距,银行业整体在大数据使用方面也面临挑战。
首先,银行在内部数据收集方面遇到的挑战。
银行在数据应用方面的挑战是全方位的,传统的IOE架构因为存储成本相对较高,大量的历史数据存储在磁带中,甚至档案馆中还有大量没有数字化的物理凭证或没有结构化的影像数据。即使将这些数据结构化,银行还要面临历史数据标准不统一,缺乏有效数据治理手段,数据质量参差不齐,数据应用无章可循等历史遗留问题。与此同时,传统的以账户为中心,以会计为导向的银行IT系统缺乏收集客户账户查询、咨询、投诉等行为信息的能力,无法体现高维度的数据价值。数字时代银行的IT系统必须是以客户为中心,以市场为导向,具备采集全渠道客户基本信息、交易信息、交易对手信息、客户与银行的接触轨迹信息等更多维度信息的能力。这就要求银行从客户信息治理、丰富客户模型开始,不断完善客户、账户信息的同时开始客户行为信息的收集。数据的价值将会随着维度的增加而显著提高。
其次,银行在外部数据收集方面遇到的挑战。
互联网平台公司拥有大量与客户频繁互动的场景,在收集客户行为信息,客户之间关联信息等方面具有天然优势。银行必须通过与互联网企业合作才能采集更多维度的信息,但是银行必须在保护客户隐私的合规前提下,及时有效地获取相关信息。其合规成本与合作的代价也是传统银行在开发相关数据应用时必须考虑的。
再次,银行在大数据应用IT支撑方面遇到的挑战。大数据应用的软硬件支撑平台对传统银行的IT系统提出了新的要求。特别是在分布式存储和处理实时数据能力方面银行迫切需要专业的人才支持。非结构化数据的结构化,具备自学习能力的数据模型机制还要求银行具备将前沿的人工智能技术与大数据应用相结合的能力。此外,商业银行还需要在实践中培养可以支持开放式平台架构,分布式应用系统,Hadoop架构等的开发和运营维护人员。
在外部技术变革驱动和内部转型发展的共同推动下,中国银行业都在积极地践行国家“互联网+”战略,前瞻性地探索并积极推进新兴技术的应用,将科技创新与业务创新深度融合。国内多家银行目前已经在精准营销、智能风控、跨界合作、普惠金融、数据治理等方面取得了显著的应用成效,有效的提升了自身网络金融包括风险管理、大数据应用、人工智能应用、云计算、产品效率等核心能力。结合中国银行的实践经验而谈,对于银行业而言大数据金融的探索与实践,需要提升以下四个的方面的能力与效率。