专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
量化投资与机器学习  ·  2024年全球『最赚钱』的对冲基金管理人出炉! ·  2 天前  
爱可可-爱生活  ·  [LG] Towards Large ... ·  3 天前  
宝玉xp  ·  //@蒋文明in南京:作为 AGI ... ·  4 天前  
爱可可-爱生活  ·  【[1.6k星]React ... ·  4 天前  
51好读  ›  专栏  ›  机器学习研究会

【学习】深度神经网络进军医学界——《自然》杂志刊登了一篇斯坦福大学关于用深度学习检测皮肤癌的论文

机器学习研究会  · 公众号  · AI  · 2017-01-26 23:17

正文


点击上方“机器学习研究会”可以订阅哦
摘要
 

转自:王威廉

深度神经网络进军医学界:近日,《自然》杂志刊登了一篇斯坦福大学关于用深度学习检测皮肤癌的论文《Dermatologist-level classification of skin cancer with deep neural networksSebastian Thrun院士表示,他们的方法和皮肤病专家的准确度差不多。

Skin cancer, the most common human malignancy123, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs)45 show potential for general and highly variable tasks across many fine-grained object categories67891011. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images—two orders of magnitude larger than previous datasets12—consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.


链接:

http://www.nature.com/nature/journal/vaop/ncurrent/full/nature21056.html#access


原文链接:

http://weibo.com/1657470871/EszUSbAsZ?ref=collection&type=comment#_rnd1485442412088

“完整内容”请点击【阅读原文】

↓↓↓