来源:Python开发
ID:PythonPush
前言
很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。
一点区分
对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有意无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,
人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。
可以说人脸检测是是人识别的前期工作。
今天我们要做的是人脸识别。
所用工具
-
Anaconda 2 —— Python 2
-
Dlib
-
scikit-image
Dlib
对于今天要用到的主要工具,还是有必要多说几句的。Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:
上面需要用到的 scikit-image同样只是需要这么一句:
人脸识别
之所以用 Dlib 来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。今天我们主要目的是实现,而不是深究原理。感兴趣的同学可以到官网查看源码以及实现的参考文献。
今天的例子既然代码不超过40行,其实是没啥难度的。有难度的东西都在源码和论文里。
首先先通过文件树看一下今天需要用到的东西:
准备了六个候选人的图片放在 candidate-faces 文件夹中,然后需要识别的人脸图片 test.jpg 。我们的工作就是要检测到 test.jpg 中的人脸,然后判断她到底是候选人中的谁。
另外的 girl-face-rec.py 是我们的python脚本。 shape_predictor_68_face_landmarks.dat是已经训练好的人脸关键点检测器。 dlib_face_recognition_resnet_model_v1.dat 是训练好的ResNet人脸识别模型。ResNet是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 2015 冠军,通过让网络对残差进行学习,在深度和精度上做到了比 CNN 更加强大。
1. 前期准备
shape_predictor_68_face_landmarks.dat和 dlib_face_recognition_resnet_model_v1.dat都可以在这里找到。不能点击超链接的可以直接输入以下网址:http://dlib.net/files/。
然后准备几个人的人脸图片作为候选人脸,最好是正脸。放到 candidate-faces 文件夹中。
本文这里准备的是六张图片,如下:
她们分别是
candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']
然后准备四张需要识别的人脸图像,其实一张就够了,这里只是要看看不同的情况:
可以看到前两张和候选文件中的本人看起来还是差别不小的,第三张是候选人中的原图,第四张图片微微侧脸,而且右侧有阴影。
2.识别流程
数据准备完毕,接下来就是代码了。识别的大致流程是这样的:
-
先对候选人进行人脸检测、关键点提取、描述子生成后,把候选人描述子保存起来。
-
然后对测试人脸进行人脸检测、关键点提取、描述子生成。
-
最后求测试图像人脸描述子和候选人脸描述子之间的欧氏距离,距离最小者判定为同一个人。
3.代码
代码不做过多解释,因为已经注释的非常完善了。以下是 girl-face-rec.py
import sys,os,dlib,glob,numpy
from skimage import io
if len(sys.argv) != 5:
print "请检查参数是否正确"
exit()
predictor_path = sys.argv[1]
face_rec_model_path = sys.argv[2]
faces_folder_path = sys.argv[3]
img_path = sys.argv[4]
detector = dlib.get_frontal_face_detector()
sp = dlib.shape_predictor(predictor_path)
facerec = dlib.face_recognition_model_v1(face_rec_model_path)
descriptors = []
for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
print("Processing file: {}".format(f))
img = io.imread(f)
dets = detector(img, 1)
print("Number of faces detected: {}".format(len(dets)))
for k, d in enumerate(dets):
shape = sp(img, d)
face_descriptor = facerec.compute_face_descriptor(img, shape)
v = numpy.array(face_descriptor)
descriptors.append(v)
img = io.imread(img_path)
dets = detector(img, 1)
dist = []
for k, d in enumerate(dets):
shape = sp(img, d)
face_descriptor = facerec.compute_face_descriptor(img, shape)
d_test = numpy.array(face_descriptor)
for i in descriptors:
dist_ = numpy.linalg.norm(i-d_test)
dist.append(dist_)
candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']
c_d = dict(zip(candidate,dist))
cd_sorted = sorted(c_d.iteritems(), key=lambda