专栏名称: AirPython
分享 Python 自动化及爬虫、数据分析实战干货,欢迎关注。
目录
相关文章推荐
壹心理  ·  一个心理咨询师的成长之路是什么样的? ·  17 小时前  
武志红  ·  养一个敏感孩子,父母有多难? ·  昨天  
顶尖管理哲学  ·  真正拖垮你的,可能是你的限制性信念 ·  2 天前  
51好读  ›  专栏  ›  AirPython

Python 爬虫进阶 - 前后端分离有什么了不起,过程超详细!

AirPython  · 公众号  ·  · 2021-01-14 12:03

正文


我们要抓取下面这个网站上的所有图书列表:

https://www.epubit.com/books

1) 探索研究

创建一个新的python文件,写入如下代码:

import requests
url = 'https://www.epubit.com/books'
res = requests.get(url)
print(res.text)

运行发现打印结果如下:

这里面根本没有图书的信息。但使用浏览器检查器可以看到图书的信息:

我们碰到了一个 基于前后端分离 的网站,或者说一个 用JavaScript获取数据 的网站。这种网站的数据流程是这样的:

  • 初次请求 只返回了网页的基本框架,并没有数据。就是前面截图看到那样。
  • 但网页的基本框架中包含JavaScript的代码,这段代码会再发起一次或者多次请求获取数据。我们称为 后续请求

为了抓取这样的网站,有两个办法:

  1. 分析出后续请求的地址和参数,写代码发起同样的后续请求。
  2. 使用模拟浏览器技术,比如selenium。这种技术可以自动发起后续请求获取数据。

2) 分析后续请求

打开谷歌浏览器的检查器,按图中的指示操作:

  1. 点击 Network ,这里可以查看浏览器发送的所有网络请求。
  2. XHR ,查看浏览器用JavaScript发送的请求。
  3. 下面可以看到很多请求。我们要一个个看过去找到包含商品列表的请求。

再来理解一下浏览器打开一个网页的过程,一般并不是一个请求返回了所有的内容,而是包含多个步骤:

  1. 第一个请求获得HTML文件,里面可能包含文字,数据,图片的地址,样式表地址等。HTML文件中并没有直接包含图片。
  2. 浏览器根据HTML中的链接,再次发送请求,读取图片,样式表,基于JavaScript的数据等。

所以我们看到有这么不同类型的请求:XHR, JS,CSS,Img,Font, Doc等。

我们爬取的网站发送了很多个XHR请求,分别用来请求图书列表,网页的菜单,广告信息,页脚信息等。我们要从这些请求中找出图书的请求。

具体操作步骤如图:

  1. 在左边选中请求
  2. 在右边选择Response
  3. 下面可以看到这个请求返回的数据,从数据可以判断是否包含图书信息。

Javascript请求返回的格式通常是JSON格式,这是一种JavaScript的数据格式,里面包含用冒号隔开的一对对数据,比较容易看懂。JSON很像Python中的字典。

在众多的请求中,可以根据请求的名字大致判断,提高效率。比如上图中getUBookList看起来就像是获取图书列表。点开查看,返回的果然是图书列表。

请记住这个链接的地址和格式,后面要用到:

https://www.epubit.com/pubcloud/content/front/portal/getUbookList?page=1&row=20&=&startPrice=&endPrice=&tagId= 分析一下,可以看到:

  1. 网址是:https://www.epubit.com/pubcloud/content/front/portal/getUbookList
  2. page=1表示第1页,我们可以依次传入2,3,4等等。
  3. row=20表示每一页有20本书
  4. startPrice和endPrice表示价格条件,他们的值都是空,表示不设定价格限制。

3) 使用postman测试猜想

为了验证这个设想打开谷歌浏览器,在地址栏中输入以下网址:

https://www.epubit.com/pubcloud/content/front/portal/getUbookList?page=1&row=20&=&startPrice=&endPrice=&tagId=

可是得到了如下的返回结果:

{
    "code""-7",
    "data"null,
    "msg""系统临时开小差,请稍后再试~",
    "success"false
}

这并不是系统出了问题,而是系统检测到我们是非正常的请求,拒绝给我们返回数据。

这说明除了发送这个URL,还需要给服务器传送额外的信息,这些信息叫做Header,翻译成中文是请求头的意思。

在下图中可以看到正常的请求中包含了多个请求头:

  1. 选中要查看的请求
  2. 在右边选Headers
  3. 往下翻,可以看到Request Headers,下面就是一项项数据:
  • Accept: application/json, text/plain, /
  • Accept-Encoding:gzip, deflate, br
  • ....

为了让服务器正常处理请求,我们要模拟正常的请求,也添加相应的header。如果给的Header也都一样,服务器根本不可能识别出我们是爬虫。后面我们会学习如何在发送请求时添加header。

但通常服务器并不会检查所有的Header,可能只要添加一两个关键Header就可以骗服务器给我们数据了。但我们要一个个测试那些Header是必须的。

在浏览器中无法添加Header,为了发送带Header的HTTP请求,我们要使用另一个软件叫做 Postman 。这是一个API开发者和爬虫工程师最常使用的工具之一。

首先在postman的官网下载:www.postman.com。根据指示一步步安装软件,中间没有额外的设置。

打开postman后可以看到如下界面:

  1. 在最上面点击加号,可以添加一个新的请求
  2. 中间填写请求的URL
  3. 点Headers进入Headers的设置界面,添加Header。

这些Header的名字和值可以在检查器中复制过来。如果自己拼写,注意千万不要写错。

我们来了解一下几个常见的header:

  • User-Agent: 这个Header表示请求者是谁,一般是一个包括详细版本信息的浏览器的名字,比如: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36

    如果爬虫不添加这个Header,服务器一下就能识别出这是不正常请求,可以予以拒绝。当然,是否拒绝取决于程序员的代码逻辑。

  • Cookie: 如果一个网站需要登录,登录的信息就保存在Cookie中。服务器通过这个Header判定是否登陆了,登陆的是谁。

    假设我们要自动在京东商城下单,我们可以先人工登录,复制Cookie的值,用Python发送请求并包含这个Cookie,这样服务器就认为我们已经登陆过了,允许我们下单或做其他操作。如果在程序中加上计时的功能,指定具体下单的时间点,这就是 秒杀程序 。这是爬取需要登录的网站的一种常用方法。

  • Accept:指浏览器接受什么格式的数据,比如**application/json, text/plain, */***是指接受JSON,文本数据,或者任何数据。

  • Origin-Domain: 是指请求者来自那个域名,这个例子中是:www.epubit.com

关于更多的HTTP的Header,可以在网上搜索 HTTP Headers 学习。

我一个个添加常用的Header,但服务器一直不返回数据,直到添加了Origin-Domain这个Header。这说明这个Header是必备条件。

网页的后台程序有可能不检查Header,也有可能检查一个Header,也有可能检查多个Header,这都需要我们尝试才能知道。

既然Origin-Domain是关键,也许后台程序只检查这一个Header,我们通过左边的选择框去掉其他的Header,只保留Origin-Domain,请求仍然成功,这说明后台只检查了这一个Header:

然后修改地址栏中的page参数,获取其他的页,比如截图中修改成了3,再发送请求,发现服务器返回了新的数据(其他的20本书)。这样我们的请求过程就成功了。

4) 写抓取程序

开发爬虫,主要的时间是分析,一旦分析清楚了,爬取代码并不复杂:

import requests

def get_page(page=1):
    '''抓取指定页的数据,默认是第1页'''
    # 使用page动态拼接URL
    url = f'https://www.epubit.com/pubcloud/content/front/portal/getUbookList?page={page}&row=20&=&startPrice=&endPrice=&tagId='
    headers = {'Origin-Domain''www.epubit.com'}
    # 请求的时候同时传入headers
    res = requests.get(url, headers=headers) 
    print(res.text)

get_page(5)

这里我们测试了抓取第5页的数据,比对打印出的JSON数据和网页上的第5页数据,结果是匹配的。

现在我们去分析JSON的数据结构,再来完善这个程序。

5) 分析JSON数据

JSON就像Python中的字典,用大括号存放数据,用冒号分割键和值。下面是省略的JSON数据:

{
    "code""0",
    "data": {
        "current"1//第一页
        "pages"144//一共几页
        "records": [  //很多本书的信息放在方括号中
            {
                "authors""[美] 史蒂芬·普拉达(Stephen Prata)",  //作者
                "code""UB7209840d845c9"//代码
                "collectCount"416//喜欢数
                "commentCount"64//评论数
                "discountPrice"0//折扣价
                "downebookFlag""N",
                "fileType""",
                ...
            },
            {
                "authors""笨叔",
                "code""UB7263761464b35",
                "collectCount"21,
                "commentCount"3,
                "discountPrice"0,
                "downebookFlag""N",
                "fileType""",
                ...
            },
            ...
        ],
        "size"20,
        "total"2871
    },
    "msg""成功",
    "success"true
}

我们来学习一下这个JSON格式:

  1. 最外面是一个大括号,里面包含了code, data, msg, success四块信息。这个格式是开发这个网页的程序员自己设计的,不同的网页可能不同。
  2. 其中code, msg和sucess表示请求的状态码,请求返回的提示,请求是否成功。而真正的数据都在data中。
  3. data的冒号后面是一个大括号,表示一个数据对象。里面包含了当前页数(current),总页数(pages),书的信息(records)等。
  4. records表示很多本书,所以它用一个方括号表示,方括号里面又有很多大括号包起来的数据对象,每个大括号表示一本书。
{
    "authors""[美] 史蒂芬·普拉达(Stephen Prata)"//书名
    "code""UB7209840d845c9"//代码
    "collectCount"416//喜欢数
    "commentCount"64,  //评论数
    "discountPrice"






请到「今天看啥」查看全文