深度学习训练通常需要大量的计算资源。GPU目前是深度学习最常使用的计算加速硬件。相对于CPU来说,GPU更便宜(达到同样的计算能力GPU一般便宜10倍),而且计算更加密集(一台服务器可以搭配8块或者16块GPU)。因此GPU数量通常是衡量深度学习计算能力的一个标准,同时Nvidia的创始人Jensen Huang也被人称深度学习教父。
Nvidia CEO黄教主和他的战术核武器
本文我们简要介绍GPU的购买须知。这里主要针对个人用户购买一两台自用的GPU服务器。
而不是针对需要购买:
选择GPU
目前独立GPU主要有AMD和Nvidia两家厂商。其中Nvidia由于深度学习布局较早,深度学习框架支持更好,因此目前主要会选择Nvidia的卡。
Nvidia卡有面向个人用户(例如GTX系列)和企业用户(例如Tesla系列)两种。企业用户卡通常使用被动散热和增加了内存校验从而更加适合数据中心。但计算能力上两者相当。企业卡通常要贵上10倍,因此个人用户通常选用GTX系列。
Nvidia一般每一两年会更新一次大版本,例如目前最新的是1000系列。每个系列里面会有数个不同型号,对应不同的性能。
GPU的性能主要由下面三个主要参数构成: