一定要为查询语句指定 WHERE 条件,过滤掉不需要的数据行。通常来说,OLTP 系统每次只需要从大量数据中返回很少的几条记录;指定查询条件可以帮助我们通过索引返回结果,而不是全表扫描。绝大多数情况下使用索引时的性能更好,因为索引(B-树、B+树、B*树)执行的是二进制搜索,具有对数时间复杂度,而不是线性时间复杂度。以下是 MySQL 聚簇索引的示意图:
EXPLAIN ANALYZE SELECT e.emp_id, e.emp_name FROM employee e JOIN (SELECT dept_id, AVG(salary) AS dept_average FROM employee GROUP BY dept_id) t ON e.dept_id = t.dept_id WHERE e.salary > t.dept_average; -> Nested loop inner join (actual time=0.722..2.354 rows=6 loops=1) -> Table scan on e (cost=2.75 rows=25) (actual time=0.096..0.205 rows=25 loops=1) -> Filter: (e.salary > t.dept_average) (actual time=0.068..0.076 rows=0 loops=25) -> Index lookup on t using (dept_id=e.dept_id) (actual time=0.011..0.015 rows=1 loops=25) -> Materialize (actual time=0.048..0.057 rows=1 loops=25) -> Group aggregate: avg(employee.salary) (actual time=0.228..0.510 rows=5 loops=1) -> Index scan on employee using idx_emp_dept (cost=2.75 rows=25) (actual time=0.181..0.348 rows=25 loops=1)
-- MySQL SELECT * FROM large_table WHERE id > last_id ORDER BY id LIMIT 10;
如果 id 字段上存在索引,这种分页查询的方式可以基本不受数据量的影响。
法则五:了解 SQL 子句的逻辑执行顺序
以下是 SQL 中各个子句的语法顺序,前面括号内的数字代表了它们的逻辑执行顺序:
(6)SELECT [DISTINCT | ALL] col1, col2, agg_func(col3) AS alias (1) FROM t1 JOIN t2 (2) ON (join_conditions) (3) WHERE where_conditions (4) GROUP BY col1, col2 (5)HAVING having_condition (7) UNION [ALL] ... (8) ORDER BY col1 ASC,col2 DESC (9)OFFSET m ROWS FETCH NEXT num_rows ROWS ONLY;
也就是说,SQL 并不是按照编写顺序先执行 SELECT,然后再执行 FROM 子句。从逻辑上讲,SQL 语句的执行顺序如下:
首先,FROM 和 JOIN 是 SQL 语句执行的第一步。它们的逻辑结果是一个笛卡尔积,决定了接下来要操作的数据集。注意逻辑执行顺序并不代表物理执行顺序,实际上数据库在获取表中的数据之前会使用 ON 和 WHERE 过滤条件进行优化访问;
其次,应用 ON 条件对上一步的结果进行过滤并生成新的数据集;
然后,执行 WHERE 子句对上一步的数据集再次进行过滤。WHERE 和 ON 大多数情况下的效果相同,但是外连接查询有所区别,我们将会在下文给出示例;
接着,基于 GROUP BY 子句指定的表达式进行分组;同时,对于每个分组计算聚合函数 agg_func 的结果。经过 GROUP BY 处理之后,数据集的结构就发生了变化,只保留了分组字段和聚合函数的结果;
如果存在 GROUP BY 子句,可以利用 HAVING 针对分组后的结果进一步进行过滤,通常是针对聚合函数的结果进行过滤;
接下来,SELECT 可以指定要返回的列;如果指定了 DISTINCT 关键字,需要对结果集进行去重操作。另外还会为指定了 AS 的字段生成别名;