今天要研究的对象,是
5G接入网
。
什么是
接入网
?如果是长期关注鲜枣课堂的同学,
对这个概念
一定不会陌生。
搬出这张小枣君用过无数次的移动通信架构图:
接入网,在我们无线通信里,一般指
无线接入网
,也就是通常所说的
RAN(Radio Access Network)
。
说白了,把所有的手机终端,都连接到网络里面的这个功能,就是无线接入网。
大家耳熟能详的
基站
(BaseStation),就是属于
无线接入网(
RAN
)
。
无线基站
虽然我们从1G开始,历经2G、3G,一路走到4G,号称是技术飞速演进,但整个通信网络的逻辑架构,一直都是:手机
→
接入网→承载网→核心网
→承载网
→接入网
→手机
。
通信过程的本质,就是编码解码、调制解调、加密解密。
要做的事情就这么多,各种设备各司其职,完成这些事情。
通信标准更新换代,
无非是
设备改个名字,或者挪个位置,功能本质并没有变化。
基站系统,乃至整个无线接入网系统,亦是如此。
一个基站,通常包括BBU(主要负责信号调制)、RRU(主要负责射频处理),馈线(连接RRU和天线),天线(主要负责线缆上导行波和空气中空间波之间的转换)。
基站的组成部分
在最早期的时候,BBU,RRU和供电单元等设备,是
打包
塞在一个柜子或一个机房里的。
基站一体化
后来,慢慢开始发生变化。
怎么变化呢?通信砖家们把它们拆分了。
首先,就是把RRU和BBU先给拆分了。
硬件上不再放在一起,RRU通常会挂在机房的墙上。
BBU有时候挂墙,不过大部分时候是在机柜里。
机柜里的BBU
再到后来,RRU不再放在室内,而是被搬到了天线的身边(所谓的“
RRU拉远
”)。
天线+RRU
这样,我们的RAN就变成了
D-RAN
,也就是
Distributed RAN
(分布式无线接入网)。
这样做有什么好处呢?
一方面,大大缩短了RRU和天线之间馈线的长度,可以减少信号损耗,也可以降低馈线的成本。
另一方面,可以让网络规划更加灵活。毕竟RRU加天线比较小,想怎么放,就怎么放。
说到这里,请大家注意:
通信网络的发展演进,无非就是两个驱动力,一是为了更高的性能,二是为了更低的成本
。
有时候成本比性能更加重要,如果一项技术需要花很多钱,但是带来的回报少于付出,它就很难获得广泛应用。
RAN的演进,一定程度上就是
成本压力
带来的结果。
在
D-RAN
的架构下,运营商仍然要承担非常巨大的成本。因为为了摆放BBU和相关的配套设备(电源、空调等),运营商还是需要租赁和建设很多的室内机房或方舱。
大量的机房=大量的成本
于是,运营商就想出了
C-RAN
这个解决方案。
C-RAN
,意思是
Centralized RAN
,
集中化无线接入网
。这个C,不仅代表集中化,还代表了别的意思:
相比于D-RAN,C-RAN做得更绝。
除了RRU拉远之外,它把BBU全部都集中关押起来了。关在哪了?中心机房(CO,Central Office)。
这一大堆BBU,就变成一个BBU基带池。
C-RAN这样做,非常有效地解决了前文所说的成本问题。
你知道整个移动通信网络中,基站的能耗占比大约多少吗?
72%
你知道基站里面,空调的能耗占比大约多少吗?
56%
传统方式机房的功耗分析
也就是说,运营商的钱,大部分都花在基站上,花在基础设施上,花在电费上。
采用C-RAN之后,通过集中化的方式,可以
极大减少基站机房数量
,减少配套设备(特别是空调)的能耗。
若干小机房,都进了大机房
机房少了,租金就少了,维护费用也少了,人工费用也跟着减少了。这笔开支节省,对饱受经营压力之苦的运营商来说,简直是久旱逢甘霖。
另外,拉远之后的RRU搭配天线,可以安装在离用户更近距离的位置。距离近了,发射功率就低了。
低的发射功率意味着
用户终端电池寿命的延长
和
无线接入网络功耗的降低
。说白了,你手机会更省电,待机时间会更长,运营商那边也更省电、省钱!
更重要一点,除了运营商可以省钱之外,采用C-RAN也会带来很大的社会效益,减少大量的碳排放(CO
2
)。
此外,分散的BBU变成
BBU基带池
之后,更强大了,可以统一管理和调度,资源调配更加灵活!
C-RAN下,基站实际上是“不见了”,所有的实体基站变成了虚拟基站。
所有的虚拟基站在BBU基带池中共享用户的数据收发、信道质量等信息。强化的协作关系,使得联合调度得以实现。小区之间的干扰,就变成了小区之间的协作(CoMP),大幅提高频谱使用效率,也提升了用户感知。
多点协作传输(CoMP,Coordinated Multiple Points Transmission/Reception)是指地理位置上分离的多个传输点,协同参与为一个终端的数据(PDSCH)传输或者联合接收一个终端发送的数据(PUSCH)。
此外,BBU基带池既然都在CO(中心机房),那么,就可以对它们进行
虚拟化
了!
虚拟化
,就是
网元功能虚拟化(NFV)
。简单来说,以前BBU是专门的硬件设备,非常昂贵,现在,找个x86服务器,装个虚拟机(VM,Virtual Machines),运行具备BBU功能的软件,然后就能当BBU用啦!
这下子又省了好多钱!
正因为C-RAN这种集中化的方式会带来巨大的成本削减,所以,受到运营商的欢迎和追捧(当然,设备商们不会太开心)。
猜猜C-RAN是谁提出来的? 不是设备商,是
中国移动
。。。
最积极
推动C-RAN的,也是中国移动。。。作为世界上最大的运营商,中国移动把C-RAN奉为至宝。
到了5G时代,接入网又发生了很大的变化。
在5G网络中,接入网不再是
由BBU
、
RRU
、
天线
这些东西组成了。而是被重构为以下3个功能实体:
-
CU
(Centralized Unit,
集中单元
)
-
DU
(Distribute Unit,
分布单元
)
-
AAU
(Active Antenna Unit,
有源天线单元
)
CU:原BBU的非实时部分将分割出来,重新定义为CU,负责处理非实时协议和服务。
AAU:BBU的部分物理层处理功能与原RRU及无源天线合并为AAU。
DU:BBU的剩余功能重新定义为DU,负责处理物理层协议和实时服务。
简而言之,CU和DU,以处理内容的实时性进行区分。
简单来说,AAU=RRU+天线
再抛一张图给大家,应该能看得更明白一些:
注意,在图中,EPC(就是4G核心网)被分为New Core(5GC,5G核心网)和MEC(移动网络边界计算平台)两部分。MEC移动到和CU一起,就是所谓的“
下沉
”(离基站更近)。
核心网部分功能下沉
之所以要
BBU功能拆分
、
核心网部分下沉
,根本原因,就是为了满足5G不同场景的需要。
5G是一个“
万金油
”网络,除了网速快之外,还有很多的特点,例如时延低、支持海量连接,支持高速移动中的手机,等等。
不同场景下,对于网络的特性要求(网速、时延、连接数、能耗...),其实是不同的,有的甚至是矛盾的。
例如,你看高清演唱会直播,在乎的是画质,时效上,整体延后几秒甚至十几秒,你是没感觉的。而你远程驾驶,在乎的是时延,时延超过10
ms,都会严重影响安全。