专栏名称: 深度学习基础与进阶
一个百度人的技术提升之路,为您提供一系列计算机视觉,自然语言处理和推荐系统等高质量技术文章,让您的碎片化时间最大价值化
51好读  ›  专栏  ›  深度学习基础与进阶

YOLOv12入门教程

深度学习基础与进阶  · 公众号  ·  · 2025-03-18 11:00

正文

论文链接: https://arxiv.org/abs/2502.12524

代码链接: https://github.com/sunsmarterjie/yolov12

长期以来,增强YOLO框架的网络架构一直至关重要,但一直专注于基于cnn的改进,尽管注意力机制在建模能力方面已被证明具有优越性。这是因为基于注意力的模型无法匹配基于cnn的模型的速度。本文提出了一种以注意力为中心的YOLO框架,即YOLOv12,与之前基于cnn的YOLO框架的速度相匹配,同时利用了注意力机制的性能优势。YOLOv12在精度和速度方面超越了所有流行的实时目标检测器。例如,YOLOv12-N在T4 GPU上以1.64ms的推理延迟实现了40.6% mAP,以相当的速度超过了高级的YOLOv10-N / YOLOv11-N 2.1%/1.2% mAP。这种优势可以扩展到其他模型规模。YOLOv12还超越了改善DETR的端到端实时检测器,如RT-DETR /RT-DETRv2: YOLOv12- s比RT-DETR- r18 / RT-DETRv2-r18运行更快42%,仅使用36%的计算和45%的参数。

总结:作者围提出YOLOv12目标检测模型,测试结果更快、更强,围绕注意力机制进行创新。

一、创新点总结

作者构建了一个以注意力为核心构建了YOLOv12检测模型,主要创新点创新点如下:

1、提出一种简单有效的区域注意力机制(area-attention)。

2、提出一种高效的聚合网络结构R-ELAN。

作者提出的area-attention代码如下:

class AAttn(nn.Module):    """    Area-attention module with the requirement of flash attention.    Attributes:        dim (int): Number of hidden channels;        num_heads (int): Number of heads into which the attention mechanism is divided;        area (int, optional): Number of areas the feature map is divided. Defaults to 1.    Methods:        forward: Performs a forward process of input tensor and outputs a tensor after the execution of the area attention mechanism.    Examples:        >>> import torch        >>> from ultralytics.nn.modules import AAttn        >>> model = AAttn(dim=64, num_heads=2, area=4)        >>> x = torch.randn(2, 64, 128, 128)        >>> output = model(x)        >>> print(output.shape)
    Notes:         recommend that dim//num_heads be a multiple of 32 or 64.    """
    def __init__(self, dim, num_heads, area=1):        """Initializes the area-attention module, a simple yet efficient attention module for YOLO."""        super().__init__()        self.area = area
        self.num_heads = num_heads        self.head_dim = head_dim = dim // num_heads        all_head_dim = head_dim * self.num_heads
        self.qkv = Conv(dim, all_head_dim * 31, act=False)        self.proj = Conv(all_head_dim, dim, 1, act=False)        self.pe = Conv(all_head_dim, dim, 713, g=dim, act=False)

    def forward(self, x):        """Processes the input tensor 'x' through the area-attention"""        B, C, H, W = x.shape        N = H * W
        qkv = self.qkv(x).flatten(2).transpose(12)        if self.area > 1:            qkv = qkv.reshape(B * self.area, N // self.area, C * 3)            B, N, _ = qkv.shape        q, k, v = qkv.view(B, N, self.num_heads, self.head_dim * 3).split(            [self.head_dim, self.head_dim, self.head_dim], dim=3        )
        # if x.is_cuda:        #     x = flash_attn_func(        #         q.contiguous().half(),        #         k.contiguous().half(),        #         v.contiguous().half()        #     ).to(q.dtype)        # else:        q = q.permute(0231)        k = k.permute(0231)        v = v.permute(0231)        attn = (q.transpose(-2, -1) @ k) * (self.head_dim ** -0.5)        max_attn = attn.max(dim=-1, keepdim=True).values        exp_attn = torch.exp(attn - max_attn)        attn = exp_attn / exp_attn.sum(dim=-1, keepdim=True)        x = (v @ attn.transpose(-2, -1))        x = x.permute(0312)        v = v.permute(0312)
        if self.area > 1:            x = x.reshape(B // self.area, N * self.area, C)            v = v.reshape(B // self.area, N * self.area, C)            B, N, _ = x.shape
        x = x.reshape(B, H, W, C).permute(0312)        v = v.reshape(B, H, W, C).permute(0312)
        x = x + self.pe(v)        x = self.proj(x)        return x


结构上与YOLOv11里C2PSA中的模式相似,使用了Flash-attn进行运算加速。Flash-attn安装时需要找到与cuda、torch和python解释器对应的版本,Windows用户可用上述代码替换官方代码的AAttn代码,无需安装Flash-attn。

R-ELAN结构如下图所示:


作者基于该结构构建了A2C2f模块,与C2f/C3K2模块结构类似,代码如下:


class AAttn(nn.Module):    """    Area-attention module with the requirement of flash attention.    Attributes:        dim (int): Number of hidden channels;        num_heads (int): Number of heads into which the attention mechanism is divided;        area (int, optional): Number of areas the feature map is divided. Defaults to 1.    Methods:        forward: Performs a forward process of input tensor and outputs a tensor after the execution of the area attention mechanism.    Examples:        >>> import torch        >>> from ultralytics.nn.modules import AAttn        >>> model = AAttn(dim=64, num_heads=2, area=4)        >>> x = torch.randn(2, 64, 128, 128)        >>> output = model(x)        >>> print(output.shape)
    Notes:         recommend that dim//num_heads be a multiple of 32 or 64.    """
    def __init__(self, dim, num_heads, area=1):        """Initializes the area-attention module, a simple yet efficient attention module for YOLO."""        super().__init__()        self.area = area
        self.num_heads = num_heads        self.head_dim = head_dim = dim // num_heads        all_head_dim = head_dim * self.num_heads
        self.qkv = Conv(dim, all_head_dim * 31, act=False)        self.proj = Conv(all_head_dim, dim, 1, act=False)        self.pe = Conv(all_head_dim, dim, 713, g=dim, act=False)

    def forward(self, x):        """Processes the input tensor 'x' through the area-attention"""        B, C, H, W = x.shape        N = H * W
        qkv = self.qkv(x).flatten(2).transpose(12)        if self.area > 1:            qkv = qkv.reshape(B * self.area, N // self.area, C * 3)            B, N, _ = qkv.shape        q, k, v = qkv.view(B, N, self.num_heads, self.head_dim * 3).split(            [self.head_dim, self.head_dim, self.head_dim], dim=3        )
        # if x.is_cuda:        #     x = flash_attn_func(        #         q.contiguous().half(),        #         k.contiguous().half(),        #         v.contiguous().half()        #     ).to(q.dtype)        # else:        q = q.permute(0231)        k = k.permute(0231)        v = v.permute(0231)        attn = (q.transpose(-2, -1) @ k) * (self.head_dim ** -0.5)        max_attn = attn.max(dim=-1, keepdim=True).values        exp_attn = torch.exp(attn - max_attn)        attn = exp_attn / exp_attn.sum(dim=-1, keepdim=True)        x = (v @ attn.transpose(-2, -1))        x = x.permute(0312)        v = v.permute(0312)
        if self.area > 1:            x = x.reshape(B // self.area, N * self.area, C)            v = v.reshape(B // self.area, N * self.area, C)            B, N, _ = x.shape
        x = x.reshape(B, H, W, C).permute(0312)        v = v.reshape(B, H, W, C).permute(0312)
        x = x + self.pe(v)        x = self.proj(x)        return x

class ABlock(nn.Module):    """    ABlock class implementing a Area-Attention block with effective feature extraction.    This class encapsulates the functionality for applying multi-head attention with feature map are dividing into areas    and feed-forward neural network layers.    Attributes:        dim (int): Number of hidden channels;        num_heads (int): Number of heads into which the attention mechanism is divided;        mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2;        area (int, optional): Number of areas the feature map is divided.  Defaults to 1.    Methods:        forward: Performs a forward pass through the ABlock, applying area-attention and feed-forward layers.    Examples:        Create a ABlock and perform a forward pass        >>> model = ABlock(dim=64, num_heads=2, mlp_ratio=1.2, area=4)        >>> x = torch.randn(2, 64, 128, 128)        >>> output = model(x)        >>> print(output.shape)
    Notes:         recommend that dim//num_heads be a multiple of 32 or 64.    """
    def __init__(self, dim, num_heads, mlp_ratio=1.2, area=1):        """Initializes the ABlock with area-attention and feed-forward layers for faster feature extraction."""        super().__init__()
        self.attn = AAttn(dim, num_heads=num_heads, area=area)        mlp_hidden_dim = int(dim * mlp_ratio)        self.mlp = nn.Sequential(Conv(dim, mlp_hidden_dim, 1), Conv(mlp_hidden_dim, dim, 1, act=False))
        self.apply(self._init_weights)
    def _init_weights(self, m):        """Initialize weights using a truncated normal distribution."""        if isinstance(m, nn.Conv2d):            trunc_normal_(m.weight, std=.02)            if isinstance(m, nn.Conv2d) and m.bias is not None:                nn.init.constant_(m.bias, 0)
    def forward(self, x):        """Executes a forward pass through ABlock, applying area-attention and feed-forward layers to the input tensor."""        x = x + self.attn(x)        x = x + self.mlp(x)        return x

class A2C2f(nn.Module):      """    A2C2f module with residual enhanced feature extraction using ABlock blocks with area-attention. Also known as R-ELAN    This class extends the C2f module by incorporating ABlock blocks for fast attention mechanisms and feature extraction.    Attributes:        c1 (int): Number of input channels;        c2 (int): Number of output channels;        n (int, optional): Number of 2xABlock modules to stack. Defaults to 1;        a2 (bool, optional): Whether use area-attention. Defaults to True;        area (int, optional): Number of areas the feature map is divided. Defaults to 1;        residual (bool, optional): Whether use the residual (with layer scale). Defaults to False;        mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2;






请到「今天看啥」查看全文