专栏名称: AI算法与图像处理
考研逆袭985,非科班跨行AI,目前从事计算机视觉的工业和商业相关应用的工作。分享最新最前沿的科技,共同分享宝贵的资源资料,这里有机器学习,计算机视觉,Python等技术实战分享,也有考研,转行IT经验交流心得
目录
相关文章推荐
51好读  ›  专栏  ›  AI算法与图像处理

YOLOv11 架构改进 & 常见指令

AI算法与图像处理  · 公众号  ·  · 2024-10-29 22:09

正文

今天我们介绍 YOLOv11,这个系列中的最新成员。 YOLO 是一个在目标检测领域几乎无与伦比的算法,它产生了非常成功的结果。 这个算法系列在 YOLOv5 之后由 Ultralytics 继续开发,并且每个新模型都带来了更好的性能。

YOLOv11 是 Ultralytics 开发的最新 YOLO 模型。这个模型在执行实时目标检测时,继续平衡准确性和效率。在之前的 YOLO 版本基础上,YOLO11 在架构和训练上提供了显著的改进。在保持速度的同时提高性能的最重要的架构变化是增加了 C3K2 块、SPFF 模块和 C2PSA 块。
  • C3K2 块: 这是在以前版本中引入的 CSP(Cross Stage Partial)块的增强。该模块使用不同的核大小(例如 3x3 或 5x5)和通道分离策略来优化更复杂特征的提取。
  • SPFF(Spatial Pyramid Pooling Fusion)模块: 它是 YOLO 版本中使用的 SPP(Spatial Pyramid Pooling)模块的优化版本。该模块允许模型通过捕获不同尺度的物体属性来更好地执行。
  • C2PSA 块: 这个块通过结合通道和空间信息提供更有效的特征提取。它还与多头注意力机制一起工作,从而实现对物体更准确的感知。它优化了前一层的特征图,并用注意力机制丰富它们,以提高模型的性能。这种结构使得在复杂场景中更精确的检测成为可能,并提高了 YOLOv11 的准确性。
除了这些架构变化,YOLOv11 像 YOLOv8 一样具有多模型能力。得益于其多模型特性,YOLOv11 可以执行以下任务:
  • 目标检测:在图像中识别和定位物体。
  • 实例分割:检测物体并确定它们的边界。
  • 分类:将图像分类到预定义的类别中。
  • 姿态估计:检测和跟踪人体上的标志点。
  • 定向目标检测(OBB):检测旋转物体以提高灵敏度。
在我们开始使用之前,让我们谈谈新 YOLO 版本带来的特性。
  • 现有的主干结构已经被 C3K2 块替换,以提高特征提取能力。
  • 颈部结构已经用 SPFF 模块改进,以捕获不同大小的物体并更好地检测小物体。
  • 增加了 C2PSA 块,专注于更小或部分遮挡物体中的重要区域。
  • 通过多模型能力增加了任务数量。
  • 更容易适应各种环境,包括边缘设备。
  • 得益于其优化的架构和高效的处理能力,它可以部署在边缘设备、云平台和支持 NVIDIA GPU 的系统上。
由于这些优化和创新,YOLOv11 在实时应用中提供了性能提升。模型运行更快、更准确,提高了目标检测、样本分割和姿态估计等任务的效率。此外,兼容性得到了改善,使模型可以轻松地在不同的平台和硬件上运行(例如云或边缘设备)。 在 Ultralytics ( 详见官网:https://docs.ultralytics.com/models/yolo11/ )页面上,当他们评估 YOLOv11 与以前版本相比的性能时,他们发表了以下评论。
随着模型设计的改进,YOLO11m 在使用比 YOLOv8m 少 22% 参数的情况下,在 COCO 数据集上实现了更高的平均精度均值(mAP),使其在不牺牲准确性的情况下具有计算效率。
然而,尽管 YOLOv11 模型的性能很好并且提供了广泛的范围,但在目标检测方面,它并不像 YOLOv10 那样成功。尽管 YOLOv10 有更多的参数,YOLOv11 只实现了微小的差异(+0.1-0.5)的更好性能。在这种情况下,YOLOv10 可能仍然是我们的偏好,因为参数的过剩导致速度损失和成本。

使用 YOLOv11
使用 PyTorch 构建 YOLOv11 模型及其与其他模式的使用简要如下。
步骤 1: 首先,我们需要下载 Ultralytics 库。有了这个库,我们可以运行从 YOLOv3 到 YOLOv11 的所有模型。






请到「今天看啥」查看全文


推荐文章
Kane的小K屋  ·  非公开漫画第一季第三集发布!
8 年前
诗词天地  ·  ♬ 小年到,好运绕
8 年前
科学家庭育儿  ·  雾化吸入治疗孩子咳嗽
7 年前