专栏名称: AI掘金志
雷锋网《AI掘金志》频道:只做计算机视觉 +「安防、医学影像、零售」三大传统领域的深度采访报道。
目录
相关文章推荐
51好读  ›  专栏  ›  AI掘金志

安防“边与云”怎样协同共生?揭开边缘计算的三大认知误区

AI掘金志  · 公众号  ·  · 2019-09-03 19:21

正文


业界对于边缘计算常见的三大认知误区。

作者 | 张栋



边缘计算作为新科技和新趋势,以燎原之势引燃科技界。


随着物联网以及5G等技术的进步,智能安防等领域火速兴起。边缘凭借更实时快速的数据处理和分析、较少的网络流量占用、较低的运营成本以及更高的运行效率等优势,将会在更广泛的行业领域得以应用。


IDC预测,全球数据圈规模将从2018年的33ZB增至2025年的175ZB。到2025年全球数据圈将有近30%的数据是实时数据。


如果想要提供一流客户体验并扩大市场份额,企业的基础设施必须能满足实时数据的增长需求,边缘计算的用武之地会更为凸显。


麦肯锡公司在2018年10月的报告中提出了107个不同的边缘计算用例。预计到2025年,边缘计算的潜在价值介于1750亿美元到2150亿美元之间,而这仅仅只是硬件公司的价值。


边缘计算的潜力无穷,而对于期望充分挖掘数据价值的企业来讲,不了解边缘计算就容易被行业“边缘化”。


正如Gartner分析师Thomas J. Bittman所说,多数公司都意识到他们需要拓宽思维,不仅关注集中化和云计算,也应该关注低延迟和实时的分布式处理,但这谈何容易。


为了帮助企业更进一步了解边缘计算,希捷科技相关负责人对于边缘计算的几个常见误区做出简要分析:


误区一:边缘会吞噬掉云

分布式计算的优势非常明显,所以很多风险投资家也开始将关注点从云转移到边缘,有些甚至发布了较为大胆的预测。


企业投资人Peter Levine在2017年发表的题为《边缘的回归和云计算的终结》的演讲中称,由于机器学习和IoT驱动,计算从云转移到边缘,云将在“不久的将来”消散。


同年,Gartner的分析师Thomas Bittman也发表了类似的观点,称“边缘将吞噬云”,他在文中阐述了向“低延迟和基于地理位置的实时数据处理与分布式数据处理”的转变。


事实:边缘和云相得益彰


正如IDC预测,全球实时数据量将会大幅增加,到2025年,全球30%的数据将需要实时处理。该预测不是凭空而来,是有据可循的。


拿自动驾驶汽车和联网汽车(联网汽车与其他车辆进行大量数据通信,但不为驾驶员做出决策)为例,如果一辆联网或自动驾驶汽车的传感器感知到马路上有孩子们正在玩耍,而另一辆汽车很可能闯该区域的红灯。这种情况下,将这些信息发送回云再进行处理是来不及的,必须要迅速即刻的处理,毫秒级的延迟都关乎生命。


Levine认为,这种对性命攸关的数据的处理需要在终端进行。但是,他在同一篇报告中也承认,“重要信息仍将存储在集中化的云中”,云仍将是支持集中式机器学习的中心,这一中心需要大量数据并在边缘聚集洞察。同样,Gartner的Bittman也承认“云仍将发挥重要作用”。


因此可见,边缘不会取代云,相反,会促进云向边缘的拓展。


“边缘”或“云”哪个占上风其实不是重点,重点是云边缘将如何配置,边缘和云怎样协同工作?


超大规模数据中心仍适用于集中化的应用,比如大规模归档、内容分发、应用存储和快速原型等等。


边缘数据中心具有小型、区域性、设备独立、低成本、自动化等特征,位于网络的边缘。边缘位置独特,比如停车场、市政道路以及手机信号塔基站等。


Dell EMC表示,这些边缘集群的设计旨在抵御外围环境和安全方面的挑战,它们拥有“足够的计算能力,可以独立于集中式数据中心,进行数据整合和处理”。云计算和边缘计算基础设施提供商Packet将这些产品称为“可以随处安放”的云。


边缘可以被视为云的自然产物。


Telefonica公司副总裁Patrick Lopez表示,虽然云促进“互联网大众化”,“但我们认为边缘将会是互联网大众化的新生代力量。边缘计算本质上是把云和电信的最佳特质结合在一起,云的极致特征就是云服务便捷的访问,而电信的极致在于其即时性、永远在线、永远连接,这就是两者结合的优势所在。”


误区二:边缘只有一处







请到「今天看啥」查看全文


推荐文章
经济学人双语精读  ·  每次一词丨Day 6:come to grips with
8 年前
精英女性部落创业服务俱乐部  ·  【勇说游记篇】(四):樱花山记游
7 年前