超晶格材料通过设计和调控周期性势能及高精度层状结构,能够实现可调的电子和光学特性,在二维电子气、高电子迁移率晶体管、量子级联激光器等领域得到广泛应用。传统的生长技术,如分子束外延和化学气相沉积,虽然能够实现亚纳米级厚度的调控,但这限制了超晶格材料的进一步发展。如今,超晶格材料正从传统的半导体超晶格向多尺度构筑单元(如纳米颗粒、纳米线、纳米片和分子)的自组装体系转型。自组装超晶格的组分通常局限于同一维度及相同或互补拓扑结构的构筑单元,这一定程度上制约了超晶格结构的多样性及其功能的可调性。由不同维度构筑单元组装而成的异质/异维度超晶格,能带来全新的电子、光学及量子特性,极大丰富了超晶格家族;尤其对于手性超晶格材料,其在手性光学器件、手性电子学器件以及手性超导材料等领域展现出巨大的应用潜力。然而,由于构筑单元界面间的结构无序性,单晶态、多维度超晶格的精准合成与原子级结构表征极为困难。因此,发展新的合成策略,成功实现单晶超晶格的制备与结构解析,成为配位化学、合成化学和材料化学等交叉学科中的关键挑战之一。
上海交通大学崔勇教授团队长期致力于手性聚集和结晶研究,专注于非均相不对称催化、手性分离及光电功能材料器件的创新。团队通过发展新型手性多孔材料,推动了相关领域的快速进展(
Nat. Synth.,
2025
, 4,
43–52
;Nat. Chem.
2024
, 16,
1398–1407
;Nature
2022
, 602,
606–611
;Chem. Rev.,
2022
, 122,
9078–9144
;J. Am. Chem. Soc.,
2024
, 146,
31807-31815)。为解决前述单晶超晶格研究中的科学难题,团队提出了“MOF模板(MOF templates)”策略,基于Zr-MOF配位模板,利用锆簇不饱和配位节点的导向作用,成功合成了多系列高度有序的单晶多孔超晶格框架。在不同三维锆基MOF框架内,原位限域生长的金属卤化物(如PbI
2
、PbBr
2
、CdI
2
和NiBr
2
)与MOF模板晶格精准复合,成功制备出多维度的单晶超晶格框架。同时,超晶格材料的手性转换与手性光功能调控得以实现,为手性材料的构筑与应用开辟了新的思路与方法。