都很有规律不是吗?而在Scrapy里面,就可以设定我们想要的规律,Scrapy就可以对这些符合规律的网址及页面信息进行处理。先来看看成果吧,这一部分中,我们想要的结果就是输出排行榜里面的电影名称:
而且我们其实可以做的更好。
Pycharm用这个文件夹创建Project,douban/db处创建一个方便IDE运行的文件run.py
输入
from scrapy.cmdline import execute
execute(['scrapy', 'crawl', 'douban'])
打开douban/db/items.py,如该文件的名字,这个是我们从豆瓣这个“仓库”里取出来的“货”,我们想要的是什么“货”呢?电影名字。
classDbItem(
scrapy.Item
)
:
name
=
scrapy.Field
()
douban/db/db/spiders下创建spider.py,这个文件用来爬取网页,处理网址,我们需要告诉他我们想去的“仓库”该怎么走,该怎么爬。
“货物”信息的获取
下面轮到parse_item这个人来干活了,他需要从上述指定地点找到我们要的“货物”的信息,“货物”位于何处可以通过Xpath来查找。网页上点右键查看源代码,被给包住了,Xpath的功能就是通过这些标签来找到特定信息。
浏览器F12打开调试控制台,
指到该信息处,右侧就会显示出对应的代码
点右键有个好东西,
这个就可以拿来用啦。不幸的是,Scrapy经常不能识别出来,所以我们还需要会一点Xpath的语法(查一查10分钟搞定),参考Copy的自己修改一下。这里推荐Chrome的Xpath Helper这个插件,可以查看自己写的Xpath正不正确。
def parse_item(self,response):