专栏名称: 极市平台
极市平台是由深圳极视角推出的专业的视觉算法开发与分发平台,为视觉开发者提供多领域实景训练数据库等开发工具和规模化销售渠道。本公众号将会分享视觉相关的技术资讯,行业动态,在线分享信息,线下活动等。 网站: http://cvmart.net/
目录
相关文章推荐
最高人民法院  ·  中国法院“二十四节气”——雨水·75位司机的 ... ·  23 小时前  
最高人民法院  ·  元宵节前,从高墙到校园的温暖接力 ·  2 天前  
北方海南  ·  传染性极强!这个病毒进入高发期→ ·  3 天前  
北方海南  ·  传染性极强!这个病毒进入高发期→ ·  3 天前  
51好读  ›  专栏  ›  极市平台

CVPR 2024|字节提出新一代数据集COCONut,比COCO粒度分割更密集

极市平台  · 公众号  ·  · 2024-04-20 22:00

正文

↑ 点击 蓝字 关注极市平台
来源丨机器之心
编辑丨极市平台

极市导读

字节跳动提出了新一代细粒度理解的数据集,针对当代深度学习模型的设计需求,给总量为 383K 的图片进行了全景分割的人工标注,最后达到了 5.18M 张 mask,是至今最大规模的带人工标签的全景分割理解数据集。 >> 加入极市CV技术交流群,走在计算机视觉的最前沿

随着人工智能的发展,语言模型和生成模型获得了大量的成功并且在设计模型的过程中,模型的参数量也越来越大。对于细粒度理解任务,模型参数量也同样在增加。然而目前现有的数据集存在规模和精度的矛盾,例如 SA-1B 数据集中 99.1% 的 mask 都是机器生成的,但没有赋予语义的标签,而其他一些公开数据集也同样存在精度问题并且这些数据集的规模一般都比较小。

近期,字节跳动提出了新一代细粒度理解的数据集,针对当代深度学习模型的设计需求,给总量为 383K 的图片进行了全景分割的人工标注,最后达到了 5.18M 张 mask,是至今最大规模的带人工标签的全景分割理解数据集,命名为 COCONut。该成果已入选 CVPR2024。

论文链接: https://arxiv.org/abs/2404.08639

代码和数据集链接: https://xdeng7.github.io/coconut.github.io/

视频展示了 COCONut 的单张图片的 mask 密度以及语义类别的统计,可以看出,数据集的语义丰富以及 mask 分割粒度精细。该数据集还支持多种理解任务,例如全景分割,实例分割,语义分割,目标检测,语义控制生成和开放词汇分割,在多项任务上,仅通过替换数据集就达到了明显的性能提升。

标注方法

通常只采用人工标注是非常昂贵的,这也是目前现存的大多数公开数据集规模上不去的一个重要原因。还有一些数据集直接使用模型生成的标签,但往往这种生成的标签对模型的训练不会有太大的提高,本文也验证了这一点。所以本文提出了一种新颖的标注方式,结合人工的半自动标签生成。既能保证数据标注的精度又能实现人工劳动力的节省成本,同时还能加速标注过程。

标注精度对比

研究者把 COCONut 和 COCO 在同一张图上的标注进行对比。从下图的对比可以看到本文提出的标注方法达到了和纯人工用 Photoshop 标注几乎一致的精度,但是在标注速度上提高了 10 倍以上。

COCONut 数据集详情

和已有的 COCO 数据集相比,数据集各个类别的分布比较相近,但是在每张图的 mask 总量上是超过 COCO 数据集的,尤其是有大量单张图片有超过 100 张 mask 的情况,由此说明了 COCONut 的标注更为精细,粒度分割更密集。

实验验证

除了提出一个更好的训练集,研究者还发现现有的验证集不能很好的体现模型性能的提升,因此本文还提出了一个更加富有挑战性的、可以反映模型的提升的测试集,命名为 COCONut-val. 从下表可以看到,仅替换数据集,更高精度的训练集可以带来模型很大的提升,例如在全景分割上达到超过 4 个点的 PQ。然而当训练集的规模增加了之后,可以发现,用现有的测试集做测试并不能反映出模型的提升,而 COCONut-val 则能反映出模型在增加了训练集数据量之后仍然有明显的提升。

下图为验证集语义类别和 mask 密度的对比,可以看出新提出的验证集更具有挑战性,更能反映模型的提升。

了解更多实验结果可参考原论文,团队后续将在 GitHub 主页提供数据集和相应的模型公开下载。

公众号后台回复“ 数据集 ”获取100+深度学习各方向资源整理

极市干货







请到「今天看啥」查看全文