*本文系作者云启资本YUNQi(微信ID:yunqipartners)对i黑马投稿。
Autopilot精进至 2.0,
所有车型具备完全自动驾驶的硬件基础
2016年10月,特斯拉发布了自动驾驶系统Autopilot 2.0,宣布消费者如果现在订购特斯拉汽车,就可以选择具有Autopilot2.0套件的车款,所有特斯拉车型(包括Model 3在内)都将具备进行完全自动驾驶的硬件基础。它认为,完全自动驾驶将使得特斯拉成为比人类更靠谱的“司机”。
1)Tesla新的Autopilot将以“影子模式”进行工作:即在后台运行,不采取实际动作,但是会记录自己应该采取什么动作,用于对比机动驾驶与人类驾驶的安全性。
2)为了进行充分测试保障安全性,autopilot 2.0开放的功能暂时少于上一代,暂时被关闭的功能包括自动紧急刹车、碰撞预警、车道保持、以及自动巡航功能。
1)八个摄像头,提供360度环视功能,最远能够测量250米范围内的物体。
2)12个超声波传感器,对视觉作补充。
3)一个增强版的前向毫米波雷达,能够在恶劣天气下工作,探测到前方车辆。
4)一个全新的车载电脑,运行基于深度神经网络研发的视觉系统、声纳与雷达系统软件,其计算能力比上一代强40倍之多。
Autopilot 1.0 VS Autopilot 2.0
从特斯拉Autopilot 2.0布局可以看出,自动驾驶的传感技术重心从雷达回到了摄像头。如果这次的特斯拉大升级固定了未来技术路线方向的话,那么这意味着在自动驾驶的探索上,特斯拉从最初选择摄像头为解决方案、到倚重雷达,到最后终于又选择了摄像头,即激光雷达的解决方案很有可能会被特斯拉抛弃。
1、在方案里加入毫米波雷达,是因为与激光相比毫米波的传播受气候的影响要小得多,可以认为具有全天候特性。
2、雷达技术造成的误识别几率更高,安全风险更大。因此,特斯拉方面对于摄像头的图像处理更加有信心。
3、雷达的生产成本较高,即改善雷达技术缺陷的成本过于大。著名的激光雷达创业公司Velodyne正在计划降低其激光雷达产品的生产成本,并在中国国内寻找相应代工商。
至于自动驾驶传感器未来的走向,我们认为存在一种混合型的路线:即把各种“不完美”的传感器组合起来。
摄像头擅长识别(物体是车还是人、标志牌是什么颜色),但容易受光线、天气影响,在强光直射时会出现致盲,运气最差的时候会导致整个传感器失灵。毫米波雷达在不同光线和天气中表现出较强的可靠性,主要作用也是检测追踪物体,但分辨率相对较低,看东西像近视眼没戴眼镜,并且检测行人的能力不足;激光光束的聚拢特性,不会因为衍射而错过细小物体,不过因为整体技术不如毫米波成熟,在雨雾天的表现会收到影响。
因此,这种路线认为,在“硬件万无一失”的前提下,可以简化算法更快实现功能。没有一个传感器可以独当一面,激光雷达也不例外。但是因其精准快速的特点,成为必不可少的补充。
谷歌无人车的“软件+硬件”配置
谷歌的无人车技术发展及最新的路测情况
-
2)截至今年10月,自动驾驶模式下一共行驶了2,230,275公里;手动模式行驶了1,309,634公里;平均每月自动驾驶里程数2.4-2.6万公里。