梁家卿 复旦大学 大数据学院 青年副研究员
个人介绍:梁家卿博士,复旦大学大数据学院青年副研究员,主要研究方向为基于知识图谱与大模型的认知智能。在国际顶级学术会议与期刊(包括TKDE,AAAI,IJCAI,ICDE等)发表论文50多篇。在应用落地方面,作为技术负责人研发并公开发布了多个知识图谱与大模型应用平台如CuteGPT、Emo-CuteGPT、CN-DBpedia、ProbasePlus、CN-Probase、“不倒翁”智能问答等,相关产品API被工业界与学术界多家单位已调用累计17亿次以上,并形成了16个专利。有成功训练百亿参数量级别模型的经验和在大规模集群上训练千亿参数量级别模型的经验。先后在国际性的“知识库构建”比赛中荣获第二名;在中国计算机学会和中国中文信息学会的主办的语言与智能技术竞赛“信息抽取”比赛中荣获第一名。主持研发的情感增强大模型 CuteGPT 在上海卓辰信息科技有限公司(帮助其情报信息知识抽取准确率达到 90%以上)、上海双地信息系统有限公司(帮助其开发了内容管理产品“小孔商业智能AI助理”)、上海光唯文化传媒有限公司(应用于其客户在新产品研发业务,新产品销售额超过千万元)等单位实现了落地应用。并且曾获ACM-ICPC区域赛金牌、TopCoder Open全球前150名、吴文俊人工智能科学技术奖科技进步奖三等奖、上海市优秀博士毕业生、上海市计算机学会优秀博士论文、华为云最佳论文复现奖、复旦大学超级博士后、上海市超级博士后、中国博士后科学基金面上资助、国家自然科学基金青年基金资助。
演讲题目:领域大模型的挑战与机遇:从构建到应用
演讲提纲:目前,GPT-4等大规模的预训练语言模型(以下简称大模型)已经获得了惊人的效果,促成了新的人工智能应用范式。然而,由于其开放性和幻觉现象,大模型在领域落地仍然遇到了诸多挑战。
事实上,大模型仍不足以也不应当整个替代现有的领域中的工作流程,而应当作为强大的人工智能工具融入其中。为此,准确定位大模型在现有工作流程中的角色和针对性地构建和增强就成为了重要的任务。
本演讲从大模型的领域适配、能力提升和协同工作三个层次,介绍和分享本团队在领域大模型构建和落地的一些实践。其目的并非提升模型的“智商”或使其在MMLU等考试中获得更高的分数,而是如何融入和赋能现有的领域应用中的工作流程,使其真正产生价值。
听众收益:
1. 大模型是否终结了知识工程?
2. 大模型和专业领域中的知识如何进行结合?